Forecasting the Emerging Risks of Aquaculture Growth in the One Health Lens in the Zambezi’s Kafue Basin, Zambia
Abstract
Aquaculture has emerged as one of the fastest-growing food production sectors globally and it is increasingly being promoted in Zambia as a strategy to improve food security and health nutrition, provide employment, and reduce pressure on capture fisheries. The Kafue Basin, a sub-basin of the Zambezi River system, is a highly productive yet ecologically sensitive landscape where aquaculture expansion is occurring alongside multiple competing water uses. This paper presents an expert-informed synthesis of perpectives drawing on previous empirical research and postgraduate thesis findings to examine the environmental, socio-economic, and governance risks associated with the expansion of both commercial and small-scale aquaculture in the basin through a One Health lens. Integrating hydrological, ecological, livelihood, and aquatic animal health perspectives, the analysis highlights nutrient pollution, degradation of wetland integrity, disease transmission, genetic risks, competition over water resources, and livelihood conflicts as key emerging threats, particularly in contexts of weak regulation. The paper further proposes practical mitigation strategies and policy recommendations informed by experiences from comparable river basins, emphasizing the importance of integrated basin planning, community participation, adaptive management, and cross-sectoral governance to support sustainable aquaculture development while safeguarding human, animal, and environmental health in the Zambezi’s Kafue Basin, Zambia.
References
Amponsah, S. K., Frimpong, F., Danquah, E. O., Amankwa-Yeboah, P., Amengor, N. E., Dzomeku, J. B., Agyemang, S. M., Adu, J. K., Frimpong, T. & Azumah, D. D. (2024). Performance of a Horizontal Subsurface Flow Constructed Wetland in Treating Aquaculture Wastewater. Journal of Ecological Engineering, 25(10), 53–61. https://doi.org/10.12911/22998993/191672
Ansah, Y. B., Frimpong, E. A., & Hallerman, E. M. (2014). Genetically-Improved Tilapia Strains in Africa: Potential Benefits and Negative Impacts. Sustainability, 6(6), 3697-3721. https://doi.org/10.3390/su6063697
Arturo, E., & Sandoval Herazo, L. C. (2024). Plants Used in Constructed Wetlands for Aquaculture: A Systematic Review. Sustainability, 17(14), 6298. https://doi.org/10.3390/su17146298
Atalah, J. & Sanchez-Jerez, P. (2020). Global assessment of ecological risks associated with farmed fish escapes. Global Ecology and Conservation, 21, e00842. https://doi.org/10.1016/j.gecco.2019.e00842
Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering, 51, 26-35. https://doi.org/10.1016/j.aquaeng.2012.07.004
Brandão, A. P., Sussai, S., Germine, J. A., Eltz, D. D., & Araújo, A. (2021). Social Sciences in One Health: Insights From Multiple Worlds Perspectives on the Dam Rupture in Brumadinho-Brazil. Frontiers in Public Health, 9, 649355. https://doi.org/10.3389/fpubh.2021.649355
Béné, C., Macfadyen, G., & Allison, E. H. (2007). Increasing the contribution of small-scale fisheries to poverty alleviation and food security. FAO Fisheries Technical Paper. Fishery and Aquaculture Economics and Policy Division. Rome: FAO. https://openknowledge.fao.org/handle/20.500.14283/a0965e ISBN 9789251056646
Berkes, F. (2009). Evolution of co-management: Role of knowledge generation, bridging organizations and social learning. Journal of Environmental Management, 90(5), 1692–1702. https://doi.org/10.1016/j.jenvman.2008.12.001
Beveridge, M. C. M. (2004). Cage aquaculture (3rd ed.). Oxford: Blackwell Publishing. ISBN:9781405108423 ISBN:9780470995761 https://doi.org/10.1002/9780470995761
Bondad-Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday-Sanz, V., Brun, E., Groumellec, M. L., Li, A., Surachetpong, W., Karunasagar, I., Hao, B., Urbani, R., & Caputo, A. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4), 1421-1451. https://doi.org/10.1111/raq.12786
Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Little, D., Ross, L., Handisyde, N., Gatward, I., & Corner, R. (2010). Aquaculture: global status and trends. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 365(1554), 2897–2912. https://doi.org/10.1098/rstb.2010.0170
Bouwmeester, M. M., Goedknegt, M. A., Poulin, R., & Thieltges, D. W. (2021). Collateral diseases: Aquaculture impacts on wildlife infections. Journal of Applied Ecology, 58(3), 453-464. https://doi.org/10.1111/1365-2664.13775
Boyd, C. E., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., McNevin, A. A., J. Tacon, A. G., Teletchea, F., Tomasso, J. R., Tucker, C. S., & Valenti, W. C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633. https://doi.org/10.1111/jwas.12714
Brugère, C., Aguilar-Manjarrez, J., M. Beveridge, M. C., & Soto, D. (2019). The ecosystem approach to aquaculture 10 years on – a critical review and consideration of its future role in blue growth. Reviews in Aquaculture, 11(3), 493-514. https://doi.org/10.1111/raq.12242
Campanati, C., Willer, D., Schubert, J., & Aldridge, D. C. (2021). Sustainable Intensification of Aquaculture through Nutrient Recycling and Circular Economies: More Fish, Less Waste, Blue Growth. Reviews in Fisheries Science & Aquaculture, 30(2), 143–169. https://doi.org/10.1080/23308249.2021.1897520
Cash, D. W., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N., Guston, D. H., Jäger, J., & Mitchell, R. B. (2003). Knowledge systems for sustainable development. Proceedings of the National Academy of Sciences, 100(14), 8086-8091. https://doi.org/10.1073/pnas.1231332100
Chabwela, H., Chomba, C., Chimbali, D. & Malama, M. (2018) Rangeland Condition and Herbage Utilization by Herbivores of the Kafue Flats North Bank: A Historical Perspective before the Construction of the Itezhi-Tezhi Dam, Zambia. Open Journal of Ecology, 8, 126-145. https://doi.org/10.4236/oje.2018.82009
Cleaver, F., & De Koning, J. (2015). Furthering critical institutionalism. International Journal of the Commons, 9(1), 1–18. https://doi.org/10.18352/ijc.535
Corso, D., Melita, M., Massaccesi, N., Quero, G. M., Basili, M., Di Cesare, A., Sabatino, R., Sbaffi, T., Fazi, S., Rakaj, A., Luna, G. M., & Amalfitano, S. (2025). Constructed wetlands for aquaculture wastewater treatment: insights on the structural and functional shifts of the aquatic microbial community. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.09.02.673640
Cowx, I. G., Lungu, A., & Kalonga, M. (2018). Optimising hydropower development and ecosystem services in the Kafue River, Zambia. Marine & Freshwater Research, 69(12), 1974–1982. https://doi.org/10.1071/mf18132
Craddock, S., & Hinchliffe, S. (2015). One world, one health? Social science engagements with the one health agenda. Social Science & Medicine, 129, 1-4. https://doi.org/10.1016/j.socscimed.2014.11.016
Debnath, P. P., Prukbenjakul, P., G., M., Tyler, C. R., & Rodkhum, C. (2023). Factors Influencing Disease Dynamics in Small-Scale Carp Polyculture in Bangladesh. Animals, 14(6), 966. https://doi.org/10.3390/ani14060966
Defoirdt, T., Sorgeloos, P., & Bossier, P. (2011). Alternatives to antibiotics for the control of bacterial disease in aquaculture. Current opinion in microbiology, 14(3), 251–258. https://doi.org/10.1016/j.mib.2011.03.004
Destoumieux-Garzón D, Mavingui P, Boetsch G, Boissier J, Darriet F, Duboz P, Fritsch C, Giraudoux P, Le Roux F, Morand S, Paillard C, Pontier D, Sueur C and Voituron Y (2018) The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 5:14. https://doi.org/10.3389/fvets.2018.00014
FAO. (2018). The State of World Fisheries and Aquaculture 2018: Meeting the sustainable development goals. Rome: FAO. http://www.fao.org/3/i9540en/I9540EN.pdf
FAO. (2020). The State of World Fisheries and Aquaculture 2020: Sustainability in action. Rome: FAO. https://doi.org/10.4060/ca9229en
Fazey, I., Schäpke, N., Caniglia, G., Patterson, J., Hultman, J., Van Mierlo, B., Säwe, F., Wiek, A., Wittmayer, J., Aldunce, P., Al Waer, H., Battacharya, N., Bradbury, H., Carmen, E., Colvin, J., Cvitanovic, C., D’Souza, M., Gopel, M., Goldstein, B., . . . Wyborn, C. (2018). Ten essentials for action-oriented and second order energy transitions, transformations and climate change research. Energy Research & Social Science, 40, 54-70. https://doi.org/10.1016/j.erss.2017.11.026
Glencross, B., Papadimitriou, V., & Huyben, D. (2025). Removing trophic levels from the fish feed-chain: Evaluating the nutritional and microbiome effects of feeding brewery protein isolate as an alternative to insect meal to Atlantic salmon. Aquaculture, 606, 742597. https://doi.org/10.1016/j.aquaculture.2025.742597
Glover, K. A., Solberg, M. F., McGinnity, P., Hindar, K., Verspoor, E., Coulson, M. W., Hansen, M. M., Araki, H., Skaala, Ø., & Svåsand, T. (2017). Half a century of genetic interaction between farmed and wild Atlantic salmon: Status of knowledge and unanswered questions. Fish and Fisheries, 18(5), 890-927. https://doi.org/10.1111/faf.12214
Haller, T., & Chabwela, H. N. (2009). Managing common pool resources in the Kafue Flats, Zambia: from common property to open access and privatisation. Development Southern Africa, 26(4), 555–567. https://doi.org/10.1080/03768350903181340
Henriksson, P. J. G., Guinée, J. B., Kleijn, R., & de Snoo, G. R. (2011). Life cycle assessment of aquaculture systems—a review of methodologies. The International Journal of Life Cycle Assessment, 17(3), 304–313. https://doi.org/10.1007/s11367-011-0369-4
Hinchliffe S. (2015). More than one world, more than one health: re-configuring interspecies health. Social science & medicine (1982), 129, 28–35. https://doi.org/10.1016/j.socscimed.2014.07.007
Jerbi, M., Aubin, J., Garnaoui, K., Achour, L., & Kacem, A. (2011). Life cycle assessment (LCA) of two rearing techniques of sea bass (Dicentrarchus labrax). Aquacultural Engineering, 46, 1-9. https://doi.org/10.1016/j.aquaeng.2011.10.001
Jentoft, S. (2000). Legitimacy and credibility in fisheries co-management. Marine Policy, 24(2), 141–146. https://doi.org/10.1016/S0308-597X(99)00025-1
Johansen, L. H., Jensen, I., Mikkelsen, H., Bjørn, P. A., Jansen, P. A., & Bergh, Ø. (2011). Disease interaction and pathogen exchange between wild and farmed fish populations with special reference to Norway. Aquaculture, 315(3–4), 167–190. https://doi.org/10.1016/j.aquaculture.2011.02.014
Jones, S., Bruno, D., Madsen, L., & Peeler, E. (2015). Disease management mitigates risk of pathogen transmission from maricultured salmonids. Aquaculture Environment Interactions, 6(2), 119–134. https://doi.org/10.3354/aei00121
Karlsson, S., Moen, T., Lien, S., Glover, K. A., & Hindar, K. (2011). Generic genetic differences between farmed and wild Atlantic salmon identified from a 7K SNP-chip. Molecular ecology resources, 11 Suppl 1, 247–253. https://doi.org/10.1111/j.1755-0998.2010.02959.x
Krkošek, M., Lewis, M. A., Morton, A., Frazer, L. N., & Volpe, J. P. (2013). Fish farms, parasites, and predators: Implications for salmon population dynamics. Proceedings of the Royal Society B: Biological Sciences, 280(1750), 20122359. https://doi.org/10.1098/rspb.2012.2359
Labra, F. A., & Jaramillo, E. (2024). Biodiversity Dynamics in a Ramsar Wetland: Assessing How Climate and Hydrology Shape the Distribution of Dominant Native and Alien Macrophytes. Plants, 14(7), 1116. https://doi.org/10.3390/plants14071116
Lorenzen, K., Beveridge, C. M., & Mangel, M. (2012). Cultured fish: Integrative biology and management of domestication and interactions with wild fish. Biological Reviews, 87(3), 639-660. https://doi.org/10.1111/j.1469-185X.2011.00215.x
Martins, C., Eding, E., Verdegem, M., Heinsbroek, L., Schneider, O., Blancheton, J., D’Orbcastel, E. R., & Verreth, J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural Engineering, 43(3), 83-93. https://doi.org/10.1016/j.aquaeng.2010.09.002
Miller, M. R., Nichols, P. D., & Carter, C. G. (2008). n-3 Oil sources for use in aquaculture – alternatives to the unsustainable harvest of wild fish. Nutrition Research Reviews, 21(2), 85–96. https://doi.org/10.1017/S0954422408102414
Murray, A. G., & Peeler, E. J. (2005). A framework for understanding the potential for emerging diseases in aquaculture. Preventive veterinary medicine, 67(2-3), 223–235. https://doi.org/10.1016/j.prevetmed.2004.10.012
Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Little, D. C., Lubchenco, J., Shumway, S. E., & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551–563. https://doi.org/10.1038/s41586-021-03308-6
Neff, B. D., Garner, S. R., & Pitcher, T. E. (2011). Conservation and enhancement of wild fish populations: preserving genetic quality versus genetic diversity. Canadian Journal of Fisheries and Aquatic Sciences, 68(6), 1139–1154. https://doi.org/10.1139/f2011-029
Peng, J., Song, Y., Liu, Z., Gao, H., & Yu, H. (2012). Performance of a novel Circular-Flow Corridor wetland toward the treatment of simulated high-strength swine wastewater. Ecological Engineering, 49, 1-9. https://doi.org/10.1016/j.ecoleng.2012.08.005
Ramsar Convention Secretariat. (2008). Ramsar Handbook on the Wise Use of Wetlands (4th ed.). Gland, Switzerland: Ramsar Convention Secretariat. https://rsis.ramsar.org/RISapp/files/RISrep/ZM530RIS.pdf
Ratner, B.D.; Mam, K.; Halpern, G. (2014). Collaborating for resilience: conflict, collective action, and transformation on Cambodia's Tonle Sap Lake. Ecology and Society, 19(3): 31 https://hdl.handle.net/20.500.12348/494
Raymond, C. M., Fazey, I., Reed, M. S., Stringer, L. C., Robinson, G. M., & Evely, A. C. (2010). Integrating local and scientific knowledge for environmental management. Journal of Environmental Management, 91(8), 1766-1777. https://doi.org/10.1016/j.jenvman.2010.03.023
Sanda, M. K., Metcalfe, N. B., & Mable, B. K. (2024). The potential impact of aquaculture on the genetic diversity and conservation of wild fish in sub-Saharan Africa. Aquatic Conservation: Marine and Freshwater Ecosystems, 34(2), e4105. https://doi.org/10.1002/aqc.4105
Schneider, C., Flörke, M., De Stefano, L., & Petersen-Perlman, J. D. (2017). Hydrological threats to riparian wetlands of international importance – a global quantitative and qualitative analysis. Hydrology and Earth System Sciences, 21(6), 2799–2815. https://doi.org/10.5194/hess-21-2799-2017
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039
Soto, D., Aguilar-Manjarrez, J., Brugère, C., Angel, D., Bailey, C., Black, K., Edwards, P., Costa-Pierce, B., Chopin, T., Deudero, S., Freeman, S., Hambrey, J., Hishamunda, N., Knowler, D., Silvert, W., Marba, N., Mathe, S., Norambuena, R., Simard, F., Tett, P., Troell, M. & Wainberg, A. (2008). Applying an ecosystem-based approach to aquaculture: principles, scales and some management measures. In D. Soto, J. Aguilar-Manjarrez & N. Hishamunda (Eds.), Building an ecosystem approach to aquaculture (pp. 15–35). FAO/Universitat de les Illes Balears Expert Workshop. 7–11 May 2007, Palma de Mallorca, Spain. FAO Fisheries and Aquaculture Proceedings. No. 14. Rome, FAO. https://www.fao.org/4/i0339e/i0339e02.pdf
Sweeney, B. W., & Newbold, J. D. (2014). Streamside Forest Buffer Width Needed to Protect Stream Water Quality, Habitat, and Organisms: A Literature Review. JAWRA Journal of the American Water Resources Association, 50(3), 560-584. https://doi.org/10.1111/jawr.12203
Tett, P. (2017) The Ecosystem Approach to Aquaculture and Spatial Planning. LMC Working Paper, 24 pp. SAMS, Oban, Scotland. https://www.aquaspace-h2020.eu/wp-content/uploads/2018/02/AquaSpaceMM-02-EAA-MSP-Tett-21Dec17.pdf
Tharme, R. E. (2003). A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19(5–6), 397–441. https://doi.org/10.1002/rra.736
Troell, M., Naylor, R. L., Metian, M., Beveridge, M., Tyedmers, P. H., Folke, C., Arrow, K. J., Barrett, S., Crépin, A., Ehrlich, P. R., Gren, Å., Kautsky, N., Levin, S. A., Nyborg, K., Österblom, H., Polasky, S., Scheffer, M., Walker, B. H., Xepapadeas, T., . . . De Zeeuw, A. (2014). Does aquaculture add resilience to the global food system? Proceedings of the National Academy of Sciences, 111(37), 13257-13263. https://doi.org/10.1073/pnas.1404067111
Troell, M., Costa-Pierce, B., Stead, S., Cottrell, R. S., Brugere, C., Farmery, A. K., Little, D. C., Strand, Å., Pullin, R., Soto, D., Beveridge, M., Salie, K., Dresdner, J., Moraes-Valenti, P., Blanchard, J., James, P., Yossa, R., Allison, E., Devaney, C., . . . Barg, U. (2023). Perspectives on aquaculture's contribution to the Sustainable Development Goals for improved human and planetary health. Journal of the World Aquaculture Society, 54(2), 251-342. https://doi.org/10.1111/jwas.12946
Welch, A. W., Knapp, A. N., Tourky, S. E., Daughtery, Z., Hitchcock, G., & Benetti, D. (2019). The nutrient footprint of a submerged-cage offshore aquaculture facility located in the tropical Caribbean. Journal of the World Aquaculture Society, 50(2), 299-316. https://doi.org/10.1111/jwas.12593
WOAH/OIE. (2021). Aquatic Animal Health Code. Paris: World Organisation for Animal Health. https://www.woah.org/en/what-we-do/standards/codes-and-manuals/aquatic-code-online-access/
World Bank. (2013). Environmental flows in water resources policies, plans, and projects: Findings and recommendations. Washington, DC: World Bank. https://documents.worldbank.org/en/publication/documents-reports/documentdetail/972101468331971036/environmental-flows-in-water-resources-policies-plans-and-projects-findings-and-recommendations
Wringe, B.F., Jeffery, N.W., Stanley, R.R.E., Hamilton, L.C., Anderson, E.C., Fleming, I.A. et al. (2018). Extensive hybridization following a large escape of domesticated Atlantic salmon in the Northwest Atlantic. Communications Biology, 1, 108. https://doi.org/10.1038/s42003-018-0112-9
Xu, C., Feng, Y., Li, H., Li, Y., Yao, Y., & Wang, J. (2024a). Constructed wetlands for mariculture wastewater treatment: From systematic review to improvement measures and insights. Desalination, 579, 117505. https://doi.org/10.1016/j.desal.2024.117505
Xu, C., Su, G., Brosse, S., Zhao, K., Zhang, M., & Xu, J. (2024b). Social benefits and environmental performance of aquaculture need to improve worldwide. Communications Earth & Environment, 5(1), 698. https://doi.org/10.1038/s43247-024-01790-0
Zeng, L., Engels, S., Swann, G. E., Chen, X., Huang, X., Cao, Y., & McGowan, S. (2024). Dual impacts of hydrology and damming on eutrophication: Comparison of two Ramsar wetlands in the middle Yangtze floodplain. Journal of Hydrology, 641, 131839. https://doi.org/10.1016/j.jhydrol.2024.131839
Zinsstag, J., Schelling, E., Waltner-Toews, D., & Tanner, M. (2011). From “one medicine” to “one health” and systemic approaches to health and well-being. Preventive Veterinary Medicine, 101(3-4), 148-156. https://doi.org/10.1016/j.prevetmed.2010.07.003
Copyright (c) 2025 James Nkhoswe, Alice Nambeye, Tamara Tembo

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN 

