Information Without Mass: Theoretical Limits of the Mass-Energy-Information Equivalence

  • Boris M. Menin Refrigeration Consultant, Beer-Sheva 8467209 Israel
Keywords: Information Theory, Thermodynamics, Quantum Gravity, Landauer's Principle, Vopson's Hypothesis

Abstract

The mass-energy-information (M/E/I) equivalence hypothesis states that physical information has mass and can be directly related to energy via an extended form of the Landauer principle. Although this idea is theoretically attractive, it introduces serious contradictions into established thermodynamic and quantum principles. We show that the representation of information as a material entity violates the third law of thermodynamics and is inconsistent with the behavior of entropy at low temperatures. From a quantum perspective, information is nonlocal and manifests itself in correlations rather than in individual particles, making interpretations that imply mass or a carrier physically untenable. Moreover, the implications of the Page curve and the holographic principle emphasize that information acts as a constraint on the possible boundary conditions of a system rather than as a localized physical quantity. Experimental results from quantum teleportation and Bose-Einstein condensates support this view: information changes without measurable mass transfer. We conclude that information plays a fundamental role in physics, not as a substance, but as a structure — governing what is possible, not what is material.

References

Barends, R. et al. (2014). Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508, 500–503.

Bejan, A. (2016). Advanced Engineering Thermodynamics. Wiley. https://onlinelibrary.wiley.com/doi/chapter-epub/10.1002/9781119245964.fmatter

Bennett, C.H. (2003). Notes on Landauer’s principle. Stud. Hist. Phil. Mod. Phys., 34, 501–510. https://doi.org/10.1016/S1355-2198(03)00039-X

Bérut, A. et al. (2012). Experimental verification of Landauer’s principle. Nature, 483, 187–189. https://www.nature.com/articles/nature10872

Birman, V. (1996). Thermal effects on measurements of dynamic processes in composite structures using piezoelectric sensors. Smart Mater. Struct., 5, 379. https://doi.org/10.1088/0964-1726/5/4/001

Brillouin, L. (1956). Science and Information Theory. Academic Press, New York. https://www.physics.mcgill.ca/~delrio/courses/phys559/lectures%20and%20notes/Brillouin-Information-Theory-Ch1-4.pdf

Bouwmeester, D. et al. (1997). Experimental quantum teleportation. Nature, 390, 575–579. https://arxiv.org/abs/1901.11004

Callen, H.B. (1985). Thermodynamics and an Introduction to Thermostatistics (2nd ed.). Wiley.

Clarke, J., & Wilhelm, F.K. (2008). Superconducting quantum bits. Nature, 453, 1031–1042. https://qudev.phys.ethz.ch/static/content/courses/QSIT11/pdfs/Clarke2008.pdf

Clark, J., Savard, G., Mumpower, M., & Kankainen, A. (2023). Precise mass measurements of radioactive nuclides for astrophysics. European Physical Journal A, 59, 204. https://doi.org/10.1140/epja/s10050-023-01037-0

Dakić, B., Vedral, V., & Brukner, Č. (2010). Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett., 105, 190502. https://www.semanticscholar.org/reader/60e2989ff6978fc1ab0898831a06e85b894bae73

Giddings, S.B. (1992). Black holes and massive remnants. Phys. Rev. D, 46, 1347–1352. https://arxiv.org/abs/hep-th/9203059

Ghosh, S., & Shankaranarayanan, S. (2020). One-to-one correspondence between entanglement mechanics and black hole thermodynamics. Phys. Rev. D, 102, 125025. https://doi.org/10.1103/PhysRevD.102.125025

Greiner, M. et al. (2002). Quantum phase transition from a superfluid to a Mott insulator. Nature, 415, 39 44. https://qudev.phys.ethz.ch/static/content/courses/phys4/studentspresentations/mott/Greiner.pdf

Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Ann. Phys., 17, 891–921. https://users.physics.ox.ac.uk/~rtaylor/teaching/specrel.pdf

Harlow, D. (2016). Jerusalem lectures on black holes and quantum information. Rev. Mod. Phys., 88, 015002. https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.88.015002

Hayden, P., & Preskill, J. (2007). Black holes as mirrors: quantum information in random subsystems. JHEP 09, 120. https://doi.org/10.1088/1126-6708/2007/09/120

Hawking, S.W. (1974). Black hole explosions? Nature, 248, 30–31. https://www.nature.com/articles/248030a0

Hawking, S.W. (1976). Breakdown of predictability in gravitational collapse. Phys. Rev. D, 14, 2460–2473. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.14.2460

Henderson, L., & Vedral, V. (2001). Classical, quantum and total correlations. J. Phys. A, 34, 6899 6905. https://www.semanticscholar.org/reader/07fa481b63d97a97b29ca7db25a2a8a94f6ca746

Horowitz, G.T., & Maldacena, J.M. (2004). The black hole final state. JHEP, 02, 008. https://arxiv.org/abs/hep-th/0310281

Hubeny, V.E., Rangamani, M., & Takayanagi, T. (2007). Covariant holographic entanglement entropy proposal. JHEP, 07, 062. https://arxiv.org/abs/0705.0016

Jun, Y. et al. (2014). High-precision test of Landauer principle in a Feedback Trap. Phys. Rev. Lett. 113, 190601. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.190601

Kish, L. B. (2007). "Gravitational mass" of information? Fluctuation and Noise Letters, 7(4), C51-C68. https://doi.org/10.1142/S0219477507004148

Kish, L. B., & Granqvist, C.-G. (2013). Energy requirement of control: Comments on Szilard's engine and Maxwell's demon. EPL (Europhysics Letters), 98(6), 68001. https://doi.org/10.1209/0295-5075/98/68001

Ladyman, J., Presnell, S., Short, A.J. & Groisman, B. (2007). Logical and thermodynamic irreversibility. Stud. Hist. Phil. Mod. Phys., 38, 58–79. https://www.researchgate.net/publication/372468953_Testing_the_Minimum_System_Entropy_and_the_Quantum_of_Entropy

Landau, L.D. & Lifshitz, E.M. (1976). Mechanics (3rd ed.). Pergamon Press, Oxford. https://eclass.uoa.gr/modules/document/file.php/PHYS181/%CE%92%CE%B9%CE%B2%CE%BB%CE%B9%CE%B1/L%20D%20Landau%2C%20E.M.%20Lifshitz%20-%20Mechanics%2C%20Third%20Edition_%20Volume%201%20%28Course%20of%20Theoretical%20Physics%29-Butterworth-Heinemann%20%281976%29.pdf

Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM J. Res. Dev., 5, 183–191. https://worrydream.com/refs/Landauer_1961_-_Irreversibility_and_Heat_Generation_in_the_Computing_Process.pdf

Landauer, R. (1991). Information is Physical. Phys. Today, 44, 23–29. https://www.w2agz.com/Library/Limits%20of%20Computation/Landauer%20Article,%20Physics%20Today%2044,%205,%2023%20(1991).pdf

Lloyd, L. (2000). Ultimate physical limits to computation. Nature, 406, 1047–1054. https://arxiv.org/pdf/quant-ph/9908043

Maldacena, J.M. (1998). The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2, 231-252. https://arxiv.org/abs/hep-th/9711200

Maldacena, J. & Susskind, L. (2013). Cool horizons for entangled black holes. Fortschr. Phys., 61, 781–811. https://onlinelibrary.wiley.com/doi/abs/10.1002/prop.201300020

Morelli, R. (2024). Hawking Radiation Experimentally Verified? Can the Information Paradox be resolved? IPI Letters. https://www.researchgate.net/publication/384325883_Hawking_Radiation_Experimentally_Verified_Can_the_Information_Paradox_be_resolved

Mougeot, M. et al. (2021). Mass measurements of 99–101In challenge ab initio nuclear theory of the nuclide 100Sn. Nature Physics, 17, 1099–1103. https://doi.org/10.1038/s41567-021-01280-4

Newton, I. (1687). Philosophiæ Naturalis Principia Mathematica. Royal Society, London. https://ia801604.us.archive.org/1/items/newtonspmathema00newtrich/newtonspmathema00newtrich.pdf

Nielsen, M.A., & Chuang, I.L. (2000). Quantum Computation and Quantum Information. Cambridge Univ. Press. https://archive.org/details/QuantumComputationAndQuantumInformation10thAnniversaryEdition/page/n65/mode/2up

Nomura, Y. et al. (2013). Black holes, information, and Hilbert space for quantum gravity. JHEP, 11, 063. https://link.aps.org/accepted/10.1103/PhysRevD.87.084050

Ollivier, H., & Zurek, W.H. (2001). Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett., 88, 017901. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.017901

Page, D.N. (1993). Information in black hole radiation. Phys. Rev. Lett., 71, 3743–3746. https://arxiv.org/abs/hep-th/9306083

Papadimitriou, I., & Skenderis, K. (2004). AdS/CFT correspondence and Geometry. arXiv preprint hep-th/0404176. https://arxiv.org/abs/hep-th/0404176

Pauli, W.F. (1973). Thermodynamics and the Development of Physical Thought. Dover. https://toaz.info/doc-view-3

Plenio, M.B. & Vitelli, V. (2001). The physics of forgetting: Landauer's erasure principle and information theory. Contemp. Phys., 42, 25–60. https://arxiv.org/abs/quant-ph/0103108

Popescu, S. (2014). Nonlocality beyond quantum mechanics. Nat. Phys., 10, 264–270. https://doi.org/10.1038/nphys2916

Rovelli, C. (1996). Relational Quantum Mechanics. Int. J. Theor. Phys., 35, 1637–1678. https://doi.org/10.1007/BF02302261

Ryu, S., & Takayanagi, T. (2006). Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett., 96, 181602. https://arxiv.org/abs/hep-th/0603001

Shannon, C.E. (1948). A Mathematical Theory of Communication. Bell Syst. Tech. J., 27, 379–423. https://onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1948.tb01338.x

Susskind, L. (1995). The World as a Hologram. J. Math. Phys., 36, 6377–6396. https://arxiv.org/abs/hep-th/9409089

’t Hooft, G. (1993). Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026. https://arxiv.org/abs/gr-qc/9310026

Vopson, M. (2019). The mass-energy-information equivalence principle. AIP Adv., 9, 095206. https://pubs.aip.org/aip/adv/article/9/9/095206/1076232/The-mass-energy-information-equivalence-principle

Wheeler, J.A. (1990). Information, Physics, Quantum in Complexity, Entropy and the Physics of Information (W.H. Zurek, Ed.). Addison-Wesley. https://philpapers.org/archive/WHEIPQ.pdf

Yang, B. et al. (2019). Cooling and entangling ultracold atoms in optical lattices. Science 369, 550-553. https://doi.org/10.1126/science.aaz6801

Zeilinger, A. (2005). The message of the quantum. Nature, 438, 743. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d4798f6e5f4fa53dff5d8ab18b877f25df70407c

Zurek, W.H. (2003). Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys., 75, 715–775. https://arxiv.org/abs/quant-ph/0105127

Published
2025-05-08
How to Cite
Menin, B. M. (2025). Information Without Mass: Theoretical Limits of the Mass-Energy-Information Equivalence. European Journal of Science, Innovation and Technology, 5(2), 223-236. Retrieved from https://ejsit-journal.com/index.php/ejsit/article/view/643
Section
Articles