Integrating Artificial Intelligence in Vital Statistics: Innovations in Public Health Data Analyses
Abstract
Birth, death, marriage, and divorce statistics are essential for population studies and primary factors for public health strategy and evaluation. The application of Artificial Intelligence (AI) in evaluating and interpreting statistics significantly accelerates the process and enhances precision. Machine learning and deep learning, for example, can provide methods for big data analysis, filter out variance that would otherwise be confusing, and find correlations that otherwise would not have been seen with the naked eye or other analysis methods. Looking at the state of the topic of vital statistics analysis in the present, the problems of gaps in data, their quality, and relevance come to the foreground. It showcases AI solutions in data enrichment, live analysis, and inventive approaches such as NLP and predictive analysis. Using data from elements that define clinical conditions like blood pressure and heart rate, AI will give a better picture of population health. It enables monitoring of the onset of sicknesses such as hypertension. This paper employs case studies across different countries to explain how AI has helped enhance the quality of collected public health data and helping improve policies. It is recommended that future studies aim to eradicate the existing hurdles, including data aggregation from multiple sources and AI model bias, to harness AI potential in the sphere of public health.
References
Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database, 2020, baaa010. https://academic.oup.com/database/article-abstract/doi/10.1093/database/baaa010/5809229
Akter, S., McCarthy, G., Sajib, S., Michael, K., Dwivedi, Y. K., D’Ambra, J., & Shen, K. N. (2021). Algorithmic bias in data-driven innovation in the age of AI. International Journal of Information Management, 60, 102387. https://www.sciencedirect.com/science/article/pii/S0268401221000803
Allam, Z., & Jones, D. S. (2020, February). On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management. Healthcare, 8(1), 46. https://www.mdpi.com/2227-9032/8/1/46
Antonopoulos, I., Robu, V., Couraud, B., Kirli, D., Norbu, S., Kiprakis, A., ... & Wattam, S. (2020). Artificial intelligence and machine learning approach to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews, 130, 109899. https://www.sciencedirect.com/science/article/pii/S136403212030191X
Arias, E., Tejada-Vera, B., & Ahmad, F. (2021). Provisional life expectancy estimates for January through June 2020. https://stacks.cdc.gov/view/cdc/100392
Baclic, O., Tunis, M., Young, K., Doan, C., Swerdfeger, H., & Schonfeld, J. (2020). Artificial intelligence in public health: Challenges and opportunities for public health made possible by advances in natural language processing. Canada Communicable Disease Report, 46(6), 161. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343054/
Barco, S., Mahmoudpour, S. H., Valerio, L., Klok, F. A., Münzel, T., Middeldorp, S., ... & Konstantinides, S. V. (2020). Trends in mortality related to pulmonary embolism in the European Region, 2000–15: analysis of vital registration data from the WHO Mortality Database. The Lancet Respiratory Medicine, 8(3), 277-287. https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(19)30354-6/fulltext
Byrd, T. F., Ahmad, F. S., Liebovitz, D. M., & Kho, A. N. (2020). Defragmenting heart failure care: medical records integration. Heart failure clinics, 16(4), 467-477. https://www.heartfailure.theclinics.com/article/S1551-7136(20)30043-X/abstract
Chang, V. (2021). An ethical framework for big data and smart cities. Technological Forecasting and Social Change, 165, 120559. https://www.sciencedirect.com/science/article/pii/S0040162520313858
Devaraj, J., Madurai Elavarasan, R., Shafiullah, G. M., Jamal, T., & Khan, I. (2021). A holistic review of energy forecasting using big data and deep learning models. International journal of energy research, 45(9), 13489-13530. https://onlinelibrary.wiley.com/doi/abs/10.1002/er.6679
Duckert, M., & Barkhuus, L. (2022). Protecting Personal Health Data through Privacy Awareness: A study of perceived data privacy among people with chronic or long-term illness. Proceedings of the ACM on Human-Computer Interaction, 6(GROUP), 1-22. https://dl.acm.org/doi/abs/10.1145/3492830
Duggineni, S. (2023). Impact of controls on data integrity and information systems. Science and Technology, 13(2), 29-35. https://www.researchgate.net/profile/Sasidhar-Duggineni/publication/372193665_Impact_of_Controls_on_Data_Integrity_and_Information_Systems/links/64a8d256b9ed6874a5046bc3/Impact-of-Controls-on-Data-Integrity-and-Information-Systems.pdf
Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., & Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big Data, 8, 1-37. https://link.springer.com/article/10.1186/s40537-021-00516-9
Gabriel, O. T. (2023). Data Privacy and Ethical Issues in Collecting Health Care Data Using Artificial Intelligence Among Health Workers (Master's thesis, Center for Bioethics and Research). https://search.proquest.com/openview/5ddc8ceef51c8524d19f3bb8023dcf49/1?pq-origsite=gscholar&cbl=2026366&diss=y
García-Carrasco, J. M., Muñoz, A. R., Olivero, J., Segura, M., & Real, R. (2021). Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS neglected tropical diseases, 15(1), e0009022. https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0009022
Giansanti, D. (2022). Artificial intelligence in public health: current trends and future possibilities. International Journal of Environmental Research and Public Health, 19(19), 11907. https://www.mdpi.com/1660-4601/19/19/11907
Giovanola, B., & Tiribelli, S. (2023). Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms. AI & society, 38(2), 549-563. https://link.springer.com/article/10.1007/s00146-022-01455-6
Hashimoto, D. A., Witkowski, E., Gao, L., Meireles, O., & Rosman, G. (2020). Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology, 132(2), 379-394. https://pubs.asahq.org/anesthesiology/article-abstract/132/2/379/108833
Hunt, X., Tomlinson, M., Sikander, S., Skeen, S., Marlow, M., du Toit, S., & Eisner, M. (2020). Artificial intelligence, big data, and mHealth: The frontiers of the prevention of violence against children. Frontiers in artificial intelligence, 3, 543305. https://www.frontiersin.org/articles/10.3389/frai.2020.543305/full
Izulla, P., Wagai, J. N., Akelo, V., Ombeva, A., Okeri, E., Onyango, D., ... & Barr, B. T. (2023). Vaccine safety surveillance in Kenya using GAIA standards: A feasibility assessment of existing national and subnational research and program systems. Vaccine, 41(39), 5722-5729. https://www.sciencedirect.com/science/article/pii/S0264410X23009064
Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. https://link.springer.com/article/10.1007/s12525-021-00475-2
Jungwirth, D., & Haluza, D. (2023). Artificial intelligence and public health: an exploratory study. International Journal of Environmental Research and Public Health, 20(5), 4541. https://www.mdpi.com/1660-4601/20/5/4541
Keyur, P. (2024). Lawful and Righteous Considerations for the Use of Artificial Intelligence in Public Health. International Journal of Computer Trends and Technology, 72(1), 48-52. https://doi.org/10.14445/22312803/IJCTT-V72I1P108
Langone, R., Cuzzocrea, A., & Skantzos, N. (2020). Interpretable Anomaly Prediction: Predicting anomalous behavior in industry 4.0 settings via regularized logistic regression tools. Data & Knowledge Engineering, 130, 101850. https://www.sciencedirect.com/science/article/pii/S0169023X1830644X
Li, I., Pan, J., Goldwasser, J., Verma, N., Wong, W. P., Nuzumlalı, M. Y., ... & Radev, D. (2022). Neural natural language processing for unstructured data in electronic health records: a review. Computer Science Review, 46, 100511. https://www.sciencedirect.com/science/article/pii/S1574013722000454
Liang, W., Tadesse, G. A., Ho, D., Fei-Fei, L., Zaharia, M., Zhang, C., & Zou, J. (2022). Advances, challenges and opportunities in creating data for trustworthy AI. Nature Machine Intelligence, 4(8), 669-677. https://www.nature.com/articles/s42256-022-00516-1
Loftus, T. J., Tighe, P. J., Filiberto, A. C., Efron, P. A., Brakenridge, S. C., Mohr, A. M., ... & Bihorac, A. (2020). Artificial intelligence and surgical decision-making. JAMA surgery, 155(2), 148-158. https://jamanetwork.com/journals/jamasurgery/article-abstract/2756311
Lv, F., Gao, X., Huang, A. H., Zu, J., He, X., Sun, X., ... & Ji, F. (2022). Excess diabetes mellitus-related deaths during the COVID-19 pandemic in the United States. EClinicalMedicine, 54. https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(22)00401-1/fulltext
MacIntyre, C. R., Chen, X., Kunasekaran, M., Quigley, A., Lim, S., Stone, H., ... & Gurdasani, D. (2023). Artificial intelligence in public health: the potential of epidemic early warning systems. Journal of International Medical Research, 51(3), 03000605231159335. https://journals.sagepub.com/doi/abs/10.1177/03000605231159335
Mennickent, D., Rodríguez, A., Opazo, M. C., Riedel, C. A., Castro, E., Eriz-Salinas, A., ... & Araya, J. (2023). Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications. Frontiers in Endocrinology, 14, 1130139. https://www.frontiersin.org/articles/10.3389/fendo.2023.1130139/full
Morgenstern, J. D., Rosella, L. C., Daley, M. J., Goel, V., Schünemann, H. J., & Piggott, T. (2021). “AI’s gonna have an impact on everything in society, so it has to have an impact on public health”: a fundamental qualitative descriptive study of the implications of artificial intelligence for public health. BMC Public Health, 21, 1-14. https://link.springer.com/article/10.1186/s12889-020-10030-x
Murdoch, B. (2021). Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Medical Ethics, 22, 1-5. https://link.springer.com/article/10.1186/s12910-021-00687-3
Nauman, A., Qadri, Y. A., Amjad, M., Zikria, Y. B., Afzal, M. K., & Kim, S. W. (2020). Multimedia Internet of Things: A comprehensive survey. IEEE Access, 8, 8202-8250. https://ieeexplore.ieee.org/abstract/document/8950450/
Pagano, T. P., Loureiro, R. B., Lisboa, F. V., Peixoto, R. M., Guimarães, G. A., Cruz, G. O., ... & Nascimento, E. G. (2023). Bias and unfairness in machine learning models: a systematic review on datasets, tools, fairness metrics, and identification and mitigation methods. Big data and cognitive computing, 7(1), 15. https://www.mdpi.com/2504-2289/7/1/15
Panayides, A. S., Amini, A., Filipovic, N. D., Sharma, A., Tsaftaris, S. A., Young, A., ... & Pattichis, C. S. (2020). AI in medical imaging informatics: current challenges and future directions. IEEE journal of biomedical and health informatics, 24(7), 1837-1857. https://ieeexplore.ieee.org/abstract/document/9103969/
Patel, S. S. (2023). Explainable machine learning models to analyse maternal health. Data & Knowledge Engineering, 146, 102198. https://www.sciencedirect.com/science/article/pii/S0169023X23000587
Raj, J. S. (2020). A novel information processing in IoT based real time health care monitoring system. Journal of Electronics, 2(03), 188-196. https://scholar.archive.org/work/ytaj2ecqjzfbfj66xkiyiwpfum/access/wayback/https://www.irojournals.com/iroei/V2/I3/06.pdf
Romiti, S., Vinciguerra, M., Saade, W., Anso Cortajarena, I., & Greco, E. (2020). Artificial intelligence (AI) and cardiovascular diseases: an unexpected alliance. Cardiology Research and Practice, 2020(1), 4972346. https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/4972346
Salvatore, D. (2021). Theory and problems of statistics and econometrics. http://elibrary.gci.edu.np:8080/bitstream/123456789/3303/1/BT-50%5BDominick_Salvatore%3B_Derrick_P_Reagle%5D_Schaum%27s_ou.pdf
Sandeepa, C., Siniarski, B., Kourtellis, N., Wang, S., & Liyanage, M. (2023). A survey on privacy of personal and non-personal data in B5G/6G networks. ACM Computing Surveys, 56(10), 266. https://dl.acm.org/doi/abs/10.1145/3662179
Schwalbe, N., & Wahl, B. (2020). Artificial intelligence and the future of global health. The Lancet, 395(10236), 1579-1586. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30226-9/fulltext
Sevakula, R. K., Au‐Yeung, W. T. M., Singh, J. P., Heist, E. K., Isselbacher, E. M., & Armoundas, A. A. (2020). State‐of‐the‐art machine learning techniques aiming to improve patient outcomes pertaining to the cardiovascular system. Journal of the American Heart Association, 9(4), e013924. https://www.ahajournals.org/doi/abs/10.1161/JAHA.119.013924
Sheikh, A., Anderson, M., Albala, S., Casadei, B., Franklin, B. D., Richards, M., ... & Mossialos, E. (2021). Health information technology and digital innovation for national learning health and care systems. The Lancet Digital Health, 3(6), e383-e396. https://www.thelancet.com/journals/landig/article/PIIS2589-7500(21)00005-4/fulltext
Skelsey, P. (2021). Forecasting risk of crop disease with anomaly detection algorithms. Phytopathology®, 111(2), 321-332. https://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO-05-20-0185-R
Smuha, N. A. (2021). From a ‘race to AI’to a ‘race to AI regulation’: regulatory competition for artificial intelligence. Law, Innovation and Technology, 13(1), 57-84. https://www.tandfonline.com/doi/abs/10.1080/17579961.2021.1898300
Solares, J. R. A., Raimondi, F. E. D., Zhu, Y., Rahimian, F., Canoy, D., Tran, J., ... & Salimi-Khorshidi, G. (2020). Deep learning for electronic health records: A comparative review of multiple deep neural architectures. Journal of biomedical informatics, 101, 103337. https://www.sciencedirect.com/science/article/pii/S1532046419302564
Vandeghinste, V., De Sisto, M., Kopf, M., Schulder, M., Brosens, C., & Soetemans, L. (2023). Report on Europe's Sign Languages. ELE Project Deliverable 1.40. Report on Europe’s Sign Languages. https://lirias.kuleuven.be/retrieve/728494
Wang, Q., Su, M., Zhang, M., & Li, R. (2021). Integrating digital technologies and public health to fight Covid-19 pandemic: key technologies, applications, challenges and outlook of digital healthcare. International Journal of Environmental Research and Public Health, 18(11), 6053. https://www.mdpi.com/1660-4601/18/11/6053
World Health Organization. (2020). Global strategy to accelerate the elimination of cervical cancer as a public health problem. World Health Organization. https://books.google.com/books?hl=en&lr=&id=hsNqEAAAQBAJ&oi=fnd&pg=PA5&dq=Difficulties+with+Vital+Statistics+Data+Analysis+in+public+health&ots=Uv6VK0gP8N&sig=DPytY8Qhi-ZxZ4VVPHp8D-YN0zQ
Ye, J. (2020). The role of health technology and informatics in a global public health emergency: practices and implications from the COVID-19 pandemic. JMIR medical informatics, 8(7), e19866. https://medinform.jmir.org/2020/7/e19866
Zeng, D., Cao, Z., & Neill, D. B. (2021). Artificial intelligence–enabled public health surveillance—from local detection to global epidemic monitoring and control. In Artificial intelligence in medicine (pp. 437-453). Academic Press. https://www.sciencedirect.com/science/article/pii/B9780128212592000223
Zuo, Z., Watson, M., Budgen, D., Hall, R., Kennelly, C., & Al Moubayed, N. (2021). Data anonymization for pervasive health care: systematic literature mapping study. JMIR medical informatics, 9(10), e29871. https://medinform.jmir.org/2021/10/e29871
Copyright (c) 2024 Bongs Lainjo
This work is licensed under a Creative Commons Attribution 4.0 International License.