Automated Brain Tumor Detection Using DenseNet121: A Deep Learning Approach for Enhanced Diagnosis in Medical Imaging
Abstract
Brain tumors are among the most serious and potentially fatal conditions affecting neurological health, necessitating quick and accurate diagnostic methods. Traditional diagnostic techniques rely on expertly analyzing MRI data, which can be time-consuming and subject to variation. Utilizing its feature propagation architecture to improve classification accuracy in complex medical imaging, the DenseNet121 model for automated brain tumor identification is examined in this research. Using a diverse MRI dataset, the model was trained and validated, achieving 99% accuracy. According to our research, DenseNet121 is a very effective tool for detecting brain tumors, showing great potential for practical use in supporting radiologists and accelerating diagnosis.
References
Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., & Erickson, B. J. (2017). Deep learning for brain MRI segmentation: State of the art and future directions. Journal of Digital Imaging, 30(4), 449–459. https://doi.org/10.1007/s10278-017-9983-4
Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., & Khan, M. K. (2019). Medical image analysis using convolutional neural networks: A review. Journal of Medical Systems, 42(11), 1–13. https://doi.org/10.1007/s10916-018-1088-1
Fang, H., & Meng, Q. H. (2019). Research on glioma classification based on DenseNet121. Journal of Healthcare Engineering, 2019, 1-10. https://doi.org/10.1155/2019/4231392
Gibson, E., Giganti, F., Hu, Y., Bonmati, E., Bandula, S., Gurusamy, K., & Barratt, D. C. (2018). Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Transactions on Medical Imaging, 37(8), 1822–1834. https://doi.org/10.1109/TMI.2018.2806309
Guan, Q., Wang, Y., Ping, B., Li, D., Xin, Y., & Wang, X. (2019). Pneumonia detection in chest X-ray images using deep convolutional neural networks. Computer Assisted Surgery, 24(1), 1–8. https://doi.org/10.1080/24699322.2019.1575336
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2018). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48. https://doi.org/10.1016/j.neucom.2015.09.116
Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K., & Zwiggelaar, R. (2019). Deep learning in mammography and breast histology, an overview and future trends. Medical Image Analysis, 55, 65–75. https://doi.org/10.1016/j.media.2019.04.001
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700–4708. https://doi.org/10.1109/CVPR.2017.243
Islam, J., & Zhang, Y. (2019). Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Informatics, 6(2), 1–14. https://doi.org/10.1186/s40708-019-0108-5
Kamnitsas, K., Ledig, C., Newcombe, V. F. J., Simpson, J. P., Kane, A. D., Menon, D. K., ... & Rueckert, D. (2017). Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis, 36, 61–78. https://doi.org/10.1016/j.media.2016.10.004
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., & van der Laak, J. A. W. M. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., & Ellison, D. W. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica, 131(6), 803–820. https://doi.org/10.1007/s00401-016-1545-1
Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2), 102–127. https://doi.org/10.1016/j.zemedi.2018.11.002
Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191
Pei, W., Fisher, M., Atif, J., & Liu, W. (2019). A review of machine learning approaches for MRI image analysis of brain tumors. International Journal of Imaging Systems and Technology, 29(4), 311–321. https://doi.org/10.1002/ima.22318
Pereira, S., Meier, R., Alves, V., Reyes, M., & Silva, C. A. (2016). Automatic brain tumor grading from MRI using a convolutional neural network and tensor-based morphometry. IEEE Transactions on Medical Imaging, 35(5), 1240–1251. https://doi.org/10.1109/TMI.2016.2527716
Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). ChexNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225.
Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48. https://doi.org/10.1186/s40537-019-0197-0
Zhao, X., Wu, Y., Song, G., Li, Z., & Zhang, Y. (2018). A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. IEEE Access, 6, 30932–30942. https://doi.org/10.1109/ACCESS.2018.2845449
Copyright (c) 2024 Deepika Saravagi
This work is licensed under a Creative Commons Attribution 4.0 International License.