Automated Brain Tumor Detection Using DenseNet121: A Deep Learning Approach for Enhanced Diagnosis in Medical Imaging

  • Dr. Deepika Saravagi Assistant Professor, Patkar Varde College, Goregaon, mumbai, Maharaashtra
Keywords: Brain Tumor Detection, DenseNet121, MRI

Abstract

Brain tumors are among the most serious and potentially fatal conditions affecting neurological health, necessitating quick and accurate diagnostic methods. Traditional diagnostic techniques rely on expertly analyzing MRI data, which can be time-consuming and subject to variation. Utilizing its feature propagation architecture to improve classification accuracy in complex medical imaging, the DenseNet121 model for automated brain tumor identification is examined in this research. Using a diverse MRI dataset, the model was trained and validated, achieving 99% accuracy. According to our research, DenseNet121 is a very effective tool for detecting brain tumors, showing great potential for practical use in supporting radiologists and accelerating diagnosis.

References

Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., & Erickson, B. J. (2017). Deep learning for brain MRI segmentation: State of the art and future directions. Journal of Digital Imaging, 30(4), 449–459. https://doi.org/10.1007/s10278-017-9983-4

Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., & Khan, M. K. (2019). Medical image analysis using convolutional neural networks: A review. Journal of Medical Systems, 42(11), 1–13. https://doi.org/10.1007/s10916-018-1088-1

Fang, H., & Meng, Q. H. (2019). Research on glioma classification based on DenseNet121. Journal of Healthcare Engineering, 2019, 1-10. https://doi.org/10.1155/2019/4231392

Gibson, E., Giganti, F., Hu, Y., Bonmati, E., Bandula, S., Gurusamy, K., & Barratt, D. C. (2018). Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Transactions on Medical Imaging, 37(8), 1822–1834. https://doi.org/10.1109/TMI.2018.2806309

Guan, Q., Wang, Y., Ping, B., Li, D., Xin, Y., & Wang, X. (2019). Pneumonia detection in chest X-ray images using deep convolutional neural networks. Computer Assisted Surgery, 24(1), 1–8. https://doi.org/10.1080/24699322.2019.1575336

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2018). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48. https://doi.org/10.1016/j.neucom.2015.09.116

Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K., & Zwiggelaar, R. (2019). Deep learning in mammography and breast histology, an overview and future trends. Medical Image Analysis, 55, 65–75. https://doi.org/10.1016/j.media.2019.04.001

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700–4708. https://doi.org/10.1109/CVPR.2017.243

Islam, J., & Zhang, Y. (2019). Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Informatics, 6(2), 1–14. https://doi.org/10.1186/s40708-019-0108-5

Kamnitsas, K., Ledig, C., Newcombe, V. F. J., Simpson, J. P., Kane, A. D., Menon, D. K., ... & Rueckert, D. (2017). Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis, 36, 61–78. https://doi.org/10.1016/j.media.2016.10.004

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., & van der Laak, J. A. W. M. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005

Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., & Ellison, D. W. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica, 131(6), 803–820. https://doi.org/10.1007/s00401-016-1545-1

Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2), 102–127. https://doi.org/10.1016/j.zemedi.2018.11.002

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191

Pei, W., Fisher, M., Atif, J., & Liu, W. (2019). A review of machine learning approaches for MRI image analysis of brain tumors. International Journal of Imaging Systems and Technology, 29(4), 311–321. https://doi.org/10.1002/ima.22318

Pereira, S., Meier, R., Alves, V., Reyes, M., & Silva, C. A. (2016). Automatic brain tumor grading from MRI using a convolutional neural network and tensor-based morphometry. IEEE Transactions on Medical Imaging, 35(5), 1240–1251. https://doi.org/10.1109/TMI.2016.2527716

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). ChexNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225.

Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48. https://doi.org/10.1186/s40537-019-0197-0

Zhao, X., Wu, Y., Song, G., Li, Z., & Zhang, Y. (2018). A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. IEEE Access, 6, 30932–30942. https://doi.org/10.1109/ACCESS.2018.2845449

Published
2024-11-25
How to Cite
Saravagi, D. D. (2024). Automated Brain Tumor Detection Using DenseNet121: A Deep Learning Approach for Enhanced Diagnosis in Medical Imaging. European Journal of Science, Innovation and Technology, 4(5), 251-255. Retrieved from https://ejsit-journal.com/index.php/ejsit/article/view/540
Section
Articles