Bridging the Gap: Lessons Learned from the Jenelata Bridge Collapse and Future Restoration Plans

  • Asdar Azis Magister of Applied Science, Bridge Maintenance and Restoration, Civil Engineering, Politeknik Negeri Ujung Pandang, Makassar, Indonesia
  • Dasyri Pasmar Magister of Applied Science, Bridge Maintenance and Restoration, Civil Engineering, Politeknik Negeri Ujung Pandang, Makassar, Indonesia
  • Hasmar Halim Magister of Applied Science, Bridge Maintenance and Restoration, Civil Engineering, Politeknik Negeri Ujung Pandang, Makassar, Indonesia
Keywords: Jenelata Bridge, bridge collapse, scouring, structural restoration, deep foundations, riverbank protection, hydraulic forces

Abstract

The collapse of the Jenelata Bridge underscores the vulnerability of bridge infrastructure in areas with significant hydraulic forces. This study investigates the primary causes of the bridge’s collapse and proposes a restoration approach to prevent similar incidents in the future. The findings reveal that intense scouring around the foundation, exacerbated by the bridge’s proximity to a river meander, weakened the abutment structure. The foundation’s design, which used shallow footings instead of more suitable deep foundations, was found inadequate to withstand the hydraulic pressures, resulting in instability and eventual structural failure. Notably, simulation analysis confirmed that the bridge itself was structurally sound to support traffic loads, ruling out overloading as a collapse factor.

For restoration, a comprehensive approach has been proposed, beginning with replacing the existing 30-meter span with a 50-meter steel truss bridge to enhance load-bearing capacity and structural flexibility. Additionally, the abutment will be relocated more than 20 meters from the scour zone to mitigate erosion risks and increase stability. Reinforcement of the existing pier is also planned to ensure it can support the weight of the new steel bridge span and a 30-meter composite bridge. Furthermore, a riverbank protection structure will be constructed to safeguard the abutment from landslides, thus enhancing the bridge's resilience to extreme environmental conditions.

This study emphasizes the importance of adapting bridge foundation designs to hydrodynamic forces in erosion-prone areas. These findings provide valuable insights into bridge design and restoration practices that can enhance structural safety and stability, particularly in challenging riverine environments.

References

Asdak, C. (2014). Hidrologi dan Pengelolaan Daerah Aliran Sungai. Yogyakarta: Gadjah Mada University Press.

Astuti, K. A., & Widyaningtias, I. (2006). Gerusan yang terjadi di sekitar Abutment Dinding vertical Tanpa sayap (Kajian Lapangan). Tugas Akhir, Departemen Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Institute Teknologi Bandung.

Breuser, R., & Raudviki, R. (1991). Scouring. Rotterdam: A.A Balkema.

Egis Abdul Aziz, & Puji Harsanto. (2019). Analisis erosi tebing sungai menggunakan HEC-RAS 5.0 (Studi Kasus Sungai Sesayap, Kab. Malinau, Prov. Kalimantan Timur). Skripsi, Jurusan Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Yogyakarta.

Froehlich, D. C. (1989). Local scour at bridge abutment. In Proceedings, ASCE, National Hydraulics Conference. San Francisco, California.

Garde, R. J., & Raju, K. G. R. (1997). Mechanics of sediment transportation and alluvial stream problems. New Delhi: Wiley Eastern Limited.

Gupta, Y. P. (2010). Use of MALWA recycled aggregate in concrete construction: A need of society for better environment. Journal of Indian Concrete Institute, 10(4).

Hardiyatmo, H. S. (2006). Mekanika tanah 1. Yogyakarta: Gadjah Mada University Press.

Hoffman, M. J., & Verheij, H. J. (1997). Scour manual. Rotterdam: A.A Balkema.

Kodoatie, R. J. (2001). Hidrolika terapan aliran pada saluran terbuka dan pipa. Semarang: C.V. Andi Offset.

Laursen, E. M. (1960). Scour at bridge crossing. Journal of Hydraulic Division, ASCE, 86(39-54).

Legono. (1990). Gerusan pada bangunan sungai. Yogyakarta: PAU Ilmu-ilmu Teknik UGM.

Maryono, A. (2009). Restorasi sungai. Yogyakarta: Gadjah Mada University Press.

Murri, M. M., Surjandari, N. S., & As’ad, S. (2014). Analisis stabilitas lereng dengan pemasangan bronjong (Studi Kasus di Sungai Gajah putih, Surakarta). e-Jurnal Matrix Teknik Sipil, 2(1), 1-10.

Nina Shaskia, & Maimun Rizalihadi. (2019). Pola gerusan lokal akibat perlakuan pada abutmen jembatan. Jurnal Teknik Sipil Universitas Syiah Kuala, 8(2), 171-184.

Noon, R. K. (2000). Forensic engineering investigation. CRC Press. https://doi.org/10.1201/9781420041415

Psda, Sulsel. (2024). Data DAS Jeneberang. mamminasata.psda.org. (diakses tanggal 21 Juli 2024, 14.15).

Putri, R. B. (2017). Perencanaan konstruksi pelindung tebing sungai sebagai upaya penanganan longsor akibat banjir di belokan sungai. Skripsi Fakultas Teknik Universitas Lampung.

Rahayu, S. (2009). Monitoring air di daerah aliran sungai. Bogor: World Agroforesty Center ICRAF Asia Tenggara.

Rao, V. V. S. (2016). Guidelines for forensic investigation of geotechnical failures. In V. Rao & G. Sivakumar Babu (Eds.), Forensic geotechnical engineering (pp. 55-75). New Delhi: Springer. https://doi.org/10.1007/978-81-322-2377-1_3

Ratay, R. T. (2019). Forensic structural engineering handbook. McGraw-Hill Education.

Raudviki, R., & Attema, A. (1993). Clear water scour at cylindrical piers. Journal of Hydraulic Engineering, 109(3), 338-350.

Schabowicz, K. (2019). Non-destructive testing of materials in civil engineering. Materials, 12(19), 3237. https://doi.org/10.3390/ma12193237

Sidharta, S. K. (1997). Irigasi dan bangunan air. Yogyakarta: Gunadarma.

Sindur, P. M. (2011). Keruntuhan jembatan gantung Kartanegara: Tragedi dalam proses rancang bangun infrastruktur. Jurnal Teknik Sipil, Institut Teknologi Bandung, 17(3), 1-13.

Sosrodarsono, S., & Tominaga, M. (2008). Perbaikan dan pengaturan sungai. Jakarta: PT Pradya Paramita.

Subarkah, I. (1980). Hidrologi untuk perencanaan bangunan air. Bandung: Digilib ITS.

Takuma Kadono, Shinichiro Okazaki, Yoshihiro Kabeyama, & Toshinori Matsui. (2020). Effect of angle between pier and center of river flow on local scouring around the bridge pier. Journal of Water, 12(1), 234. https://doi.org/10.3390/w12010234

Triatmodjo, B. (1993). Hidraulika I. Yogyakarta: Universitas Gadjah Mada.

Tung-Tsan Chen, & Chih-Hui Wang. (2015). Fall risk assessment of bridge construction using Bayesian network transferring from fault tree analysis. Journal of Civil Engineering and Management, 23(2), 273-282. https://doi.org/10.3846/13923730.2015.1068841

Ven Te Chow. (1992). Hidrolika saluran terbuka. Jakarta: Erlangga.

Published
2024-11-12
How to Cite
Azis, A., Pasmar, D., & Halim, H. (2024). Bridging the Gap: Lessons Learned from the Jenelata Bridge Collapse and Future Restoration Plans. European Journal of Science, Innovation and Technology, 4(5), 136-145. Retrieved from https://ejsit-journal.com/index.php/ejsit/article/view/529
Section
Articles