English Beyond Objectivity: The Problem of the Thinker in the Context of Scientific Models

  • Boris Menin Refrigeration Consultant
Keywords: Model selection, Thinker's mind, Freedom of choice, Abelian group, International System of Units (SI), Uncertainty

Abstract

The subjective experience of the "thinker" and the objective reality represented in scientific or technical models are in a complex interaction. The "objectivity" of scientific progress is accompanied by an inevitable subjectivity in the choice of a model in physics. This article examines the "thinker problem", which reflects the mental picture of the thinker, conditioned by his intuition, knowledge and experience and influencing his perception of reality and the models he constructs. The article substantiates the important role of the International System of Units (SI) used by the thinker in constructing a model. The Abelian structure of the SI and the finite amount of information contained in it dictate the limits of achievable accuracy in scientific research. However, the article argues that the thinker's freedom of choice in formulating a model is a necessary component of scientific progress. The article analyzes the contradictory interaction between this freedom and the desire to discover fundamental physical laws, while acknowledging the existence of limits to the accuracy of experimental measurements and the current lack of a generally accepted criterion for choosing the "most plausible" model. The article emphasizes the complex relationship between constructed models, experimental results and the philosophical position of the thinker, which obliges him to adhere to a strict methodological approach in scientific research.

References

Aad, G. et al. (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716(1), 1–29. https://doi.org/10.1016/j.physletb.2012.08.020

Abbott, B.P. et al. (2016). Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116(6), 061102. https://doi.org/10.1103/PhysRevLett.116.061102

Ade, A.R. et al. (2016). Planck 2015 results XIII. Cosmological parameters. Astronomy & Astrophysics, 594, A13. http://doi.org/10.1051/0004-6361/201525830

Alam, S. et al. (2017). The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Monthly Notices of the Royal Astronomical Society, 470(3), 2617-2652. http://doi.org/10.1093/mnras/stx721

Anderson, J.D. (2016). Fundamentals of Aerodynamics. https://www.academia.edu/40140432/Fundamentals_of_Aerodynamics_6th_edition_by_John_Anderson

Arovas, D. (2023). Lecture Notes on Group Theory in Physics. Department of Physics University of California, San Diego. https://courses.physics.ucsd.edu/2016/Spring/physics220/LECTURES/GROUP_THEORY.pdf

Artin, M. (1991). Algebra (2nd ed.). Prentice–Hall, Englewood Cliffs, NJ. https://github.com/dtbinh/OpenCourse/blob/master/AbstractAlgebra/%5Bbook%5D%20Artin%2C%20Michael.%20Algebra%2C%20second%20edition.pdf

Arute, F. et al. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574, 505-511. http://doi.org/10.1038/s41586-019-1666-5

Auffinger, J. (2022). Primordial black holes as dark matter and Hawking radiation constraints with BlackHawk. Mathematical Physics [math-ph]. Université de Lyon, 2022. Université de Lyon. https://theses.hal.science/tel-04189270v1/document

Baer, H. (2024). Beyond the Standard Model: An overview. https://arxiv.org/pdf/2405.00872

Bednorz, J.G., & Müller, K.A. (1986). Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B, 64(2), 189-193. http://doi.org/10.1007/BF01303701

Bertone, G., Hooper, D., & Silk, J. (2005). Particle dark matter: evidence, candidates and constraints. Physics Reports, 405(2005), 279–390. http://doi.org/10.1016/j.physrep.2004.08.031

Bloch, I. (2005). Ultracold quantum gases in optical lattices. Nature Physics, 1(1), 23–30. https://doi.org/10.1038/nphys138

Bohm, D. (1952). A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Physical Review, 85(2), 166-179. https://doi.org/10.1103/PhysRev.85.166

Bohr, N. (1913). I. On the constitution of atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26(151), 1–25. https://doi.org/10.1080/14786441308634955

Bony, S. et al. (2015). Clouds, circulation and climate sensitivity. Nature Geoscience, 8(4), 261–268. https://doi.org/10.1038/ngeo2398

Brown, A.R., & Susskind, L. (2022). A holographic wormhole traversed in a quantum computer. Nature, 612, 41-42. https://doi.org/10.1038/d41586-022-03832-z

Copernicus, N. (1543). On the Revolutions. https://www.geo.utexas.edu/courses/302d/Fall_2011/Full%20text%20-%20Nicholas%20Copernicus,%20_De%20Revolutionibus%20(On%20the%20Revolutions),_%201.pdf

Danzmann, K. et al. (2017). Laser Interferometer Space Antenna. https://arxiv.org/pdf/1702.00786

Dodelson, S. (2003). Modern cosmology. Academic Press, London, United Kingdom. https://www.scribd.com/document/464237499/Modern-Cosmology-Scott-Dodelson-2nd-Edition

Dunbar, K.N., Kevin, N., & Klahr, D. (2012). Scientific Thinking and Reasoning. In K. J. Holyoak, & R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (pp. 701-718). Oxford Library of Psychology. https://doi.org/10.1093/oxfordhb/9780199734689.013.0035

Frame, D. J., & Stone, D. A. (2012). Assessment of the first consensus prediction on climate change. Nature Climate Change, 3(4), 357–359. https://doi.org/10.1038/nclimate1763

Einstein, A. (1905). Zur elektrodynamik bewegter körper. Annalen der physik, 17(10), 891-921. https://users.physics.ox.ac.uk/~rtaylor/teaching/specrel.pdf

Einstein, A. (1915). Die Feldgleichungen der Gravitation. Akademie der Wissenschaften zu Berlin. https://articles.adsabs.harvard.edu/pdf/1915SPAW.......844E

Evans, L., & Bryant, P. (2008). The CERN large hadron collider: accelerator and experiments. JINST, 3, S08001. https://doi.org/10.1088/1748-0221/3/08/S08001

Eyring, V. et al. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

Galileo, G. (1638). Two New Sciences. http://files.libertyfund.org/files/753/0416_Bk.pdf

Gastiasoro, M.N., & Andersen, B.M. (2018). Enhancing Superconductivity by Disorder. https://arxiv.org/pdf/1712.02656

Gemmer, M., Michel, G., & Mahler, R. (2009). Quantum thermodynamics: emergence of thermodynamic behavior within composite quantum systems. Heidelberg, Springer, New York. Heidelberg, New York, Springer.

Goldstein, H., Poole, C., & Safko, J.L. (2002). Classical mechanics. Addison Wesley. https://physicsgg.me/wp-content/uploads/2014/12/classical_mechanics_goldstein_3ed.pdf

Govor, L. I., Kotelnikov, G. A., Meleshko, E. A., & Yakovlev, G. V. (2009). Experiment for testing special relativity theory. Physics of Atomic Nuclei, 72(3), 561–566. https://doi.org/10.1134/S1063778809030223

Green, M.B., Schwarz, J.H., & Witten, E. (2012). Superstring Theory (Vol. 1: Introduction 25th Anniversary ed.). Cambridge University Press. https://assets.cambridge.org/97811070/29118/frontmatter/9781107029118_frontmatter.pdf

Grover, L. K. (1996, July). A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (pp. 212-219). https://doi.org/10.1145/237814.237866

Feynman, R.P., Leighton, R.B., & Sands, M. (1963). The Feynman lectures on physics. https://antilogicalism.com/wp-content/uploads/2018/04/feynman-lectures.pdf

Friedman, J.I., Kendall, H.W., & Taylor, R.E. (1991). Deep inelastic scattering: Comparisons with the quark model. Reviews of Modern Physics, 63(3), 615-627. https://doi.org/10.1103/RevModPhys.63.615

Frieman, J.A., Turner, M.S., & Huterer, D. (2008). Dark Energy and the Accelerating Universe. Annu. Rev. Astron. Astrophys., 46, 385–432. https://doi.org/10.1146/annurev.astro.46.060407.145243

Higgs, P.W. (1964). Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16), 508-509. https://doi.org/10.1103/PhysRevLett.13.508

International System of Units. (2023). National Institute of Standards and Technology. https://www.scribd.com/document/568254292/siunits

Inward Bound (1988). Of Matter and Forces in the Physical World. Oxford University Press, USA. https://www.scribd.com/document/402723216/228326006-Abraham-Pais-Inward-Bound-of-Matter-and-Forces-in-the-Physical-World-1988-pdf

Kanazawa, N. et al. (2023). Qiskit Experiments: A Python package to characterize and calibrate quantum computers. Journal of Open Source Software, 8(84), 5329. https://doi.org/10.21105/joss.05329

Kepler, J. (1609). Astronomia nova. https://ia800204.us.archive.org/5/items/Astronomianovaa00Kepl/Astronomianovaa00Kepl.pdf

Kivelson, S.A. et al. (2003). How to detect fluctuating stripes in the high-temperature Superconductors. Rev. Mod. Phys., 75(4), 1201-1241. https://doi.org/10.1103/RevModPhys.75.1201

Kjaergaard, M. et al. (2020). Superconducting Qubits: Current State of Play. Annual Review of Condensed Matter Physics, 11, 369-395. https://doi.org/10.1146/annurev-conmatphys-031119-050605

Klauder, J. (2023). Quantum Physics Has a New, and Remarkable, Expansion. Journal of High Energy Physics, Gravitation and Cosmology, 9, 467-474. https://doi.org/10.4236/jhepgc.2023.92035

Kuhn, T.S. (1962). The Structure of Scientific Revolutions (2nd ed.). The University of Chicago Press, Chicago. https://www.lri.fr/~mbl/Stanford/CS477/papers/Kuhn-SSR-2ndEd.pdf

Ladd, T.D. et al. (2010). Quantum computers. Nature, 464, 45-53. https://doi.org/10.1038/nature08812

Laszlo, A. (1964). Systematization of dimensionless quantities by group theory. Int. J. Heat Mass Transfer, 7(4), 423-430. https://doi.org/10.1016/0017-9310(64)90134-6

Longino, H.E. (2002). Science as social knowledge. http://strangebeautiful.com/other-texts/longino-sci-social-know.pdf

Maldacena, J. (1998). The Large N Limit of Superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2, 231-252. https://www.intlpress.com/site/pub/files/_fulltext/journals/atmp/1998/0002/0002/ATMP-1998-0002-0002-a001.pdf

Mayor, M., & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature, 378(6555), 355–359. https://doi.org/10.1038/378355a0

Mauritsen, T. et al. (2012). Tuning the climate of a global model. J. Adv. Model. Earth Syst., 4, M00A01. https://doi.org/10.1029/2012MS000154

Meissner, W. & Ochsenfeld, R. (1993). Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften, 21, 787-788. https://doi.org/10.1007/BF01504252

Menin, B. (2017). Preferred physical-mathematical model of the cold energy storage system. Applied Thermal Engineering, 112, 1020–1026. https://doi.org/10.1016/j.applthermaleng.2016.10.128

Menin, B.M. (2017). Information Measure Approach for Calculating Model Uncertainty of Physical Phenomena. American Journal of Computational and Applied Mathematics, 7(1), 11-24.

Menin, B. (2019). A Look at the Uncertainty of Measuring the Fundamental Constants and the Maxwell Demon from the Perspective of the Information Approach. Global Journal of Researchers in Engineering: A Mechanical and Mechanics Engineering, 19(1), 1-17. https://engineeringresearch.org/index.php/GJRE/article/view/1877

Menin, B. (2021). Construction of a model as an information channel between the physical phenomenon and observer. Journal of the Association for Information Science and Technology, 72(9), 1198–1210. https://doi.org/10.1002/asi.24473

Menin, B. (2022). Simplicity of Physical Laws: Informational-Theoretical Limits. IEEE Access, 10, 56711-56719. https://doi.org/10.1109/ACCESS.2022.3177274

Меnin, В. (2023). Investigating the Link between Energy, Matter, and Information: The E = mc2 and Landauer Principle. American Journal of Computational and Applied Mathematics, 13(1), 1-5. https://www.scirp.org/reference/referencespapers?referenceid=3535473

Mohr, P.J., Newell, D.B., & Taylor, B.N. (2012). CODATA recommended values of the fundamental physical constants: 2010. Reviews of Modern Physics, 84. http://dx.doi.org/10.1103/RevModPhys.84.1527

Montanaro, A. (2016). Quantum algorithms: an overview. NPJ Quantum Inf,, 2, 15023. https://doi.org/10.1038/npjqi.2015.23

Nersessian, N. (2008). Model-based reasoning in scientific practice. In R. A. Duschl & R. E. Grandy (Eds.), Teaching Scientific Inquiry: Recommendations for Research and Implementation (pp. 57-79). Sense Publishers. https://doi.org/10.1163/9789460911453_005

Nersessian, N. (2002). Keats's Odes: A Lover's Discourse. The University of Chicago, Press Chicago and London.

Neurach, O. (1955). International Encyclopedia of Unified Science (Vol. 1 Part 1, Nos. 1-5). https://archive.org/details/B-001-015-449/page/n13/mode/2up

Nielsen, M.A., & Chuang, I.L. (2010). Quantum Computation and Quantum Information (10th Anniversary ed.). Cambridge University Press. https://profmcruz.wordpress.com/wp-content/uploads/2017/08/quantum-computation-and-quantum-information-nielsen-chuang.pdf

Newton, I. (1687). Newton’s principia. The mathematical principles or natural philosophy (1st American ed., A. Motte, Trans.). NY. https://redlightrobber.com/red/links_pdf/Isaac-Newton-Principia-English-1846.pdf

Palmer, T.N., Doblas-Reyes, F.J., & Weisheimer, M.J. (2008). Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bulletin of the American Meteorological Society, 89(4), 459-470. https://doi.org/10.1175/BAMS-89-4-459

Persic, M., Salucci, P., & Stel, F. (1996). The universal rotation curve of spiral galaxies - I. The dark matter connection. Mon. Not. R. Astron. Soc., 281, 27-47. https://doi.org/10.1093/mnras/278.1.27

Pitman, A.J., et al. (2009). Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophysical Research Letters, 36, L14814. https://doi.org/10.1029/2009GL039076

Planck, M. (1900). Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandlungen der Deutschen Physikalischen Gesellschaft, 2, 237-245. http://www.ub.edu/hcub/hfq/sites/default/files/planck-energieverteilung.pdf

Polchinski, J. (2005). String Theory, An Introduction to the Bosonic String. Cambridge University Press. https://nucleares.unam.mx/~alberto/apuntes/polchinski1.pdf

Rayleigh, L. (1900). LIII. Remarks upon the law of complete radiation. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 49(301), 539–540. https://doi.org/10.1080/14786440009463878

Relativity (2022). The Special and General Theory by Albert Einstein. Methuen & Co Ltd. https://www.gutenberg.org/ebooks/5001

Riess, A.G. et al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 116(3), 1009. https://doi.org/10.1086/300499

Shor, P.W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 26(5), 1484–1509. https://doi.org/10.1137/S0097539795293172

Smoot, G.F. et al. (1992). Structure in the COBE Differential Microwave Radiometer First-Year Maps. The Astrophysical Journal Letters, 396. https://doi.org/10.1086/186504

Tegmark, M. et al. (2004). The three-dimensional power spectrum of galaxies from the Sloan Digital Sky Survey. The Astrophysical Journal, 606(2), 702–740. https://doi.org/10.1086/382125

Tegmark, M. (2017). Being Human in the Age of Artificial Intelligence. New York, A. A. Knopf. https://www.cag.edu.tr/uploads/site/lecturer-files/max-tegmark-life-30-being-human-in-the-age-of-artificial-intelligence-alfred-a-knopf-2017-aTvn.pdf

Terhal, B.M. (2015). Quantum error correction for quantum memories. Reviews of Modern Physics, 87(2), 307-346. https://doi.org/10.1103/RevModPhys.87.307

The BIPM. (2019). The International System of Units (SI). https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf

Thornton, S.T., & Marion, J.B. (2004). Classical dynamics of particles and systems (5th ed.). Thomson Learning. https://eacpe.org/app/wp-content/uploads/2016/11/Classical-Dynamics-of-Particles-and-Systems.pdf

Tinkham, M. (1996). Introduction To Superconductivity (2nd ed.). McGraw-Hill, Inc. https://www.scribd.com/document/666718455/59011645-Tinkham-M-Introduction-to-Superconductivity

Timm, C. (2020). Theory of Superconductivity. TU Dresden Institute of Theoretical Physics. https://tu-dresden.de/mn/physik/itp/cmt/ressourcen/dateien/skripte/Skript_Supra.pdf?lang=en

Weinberg, S. (2010). Lectures on Quantum Mechanics (1-22). Cambridge University Press. https://assets.cambridge.org/97811071/11660/frontmatter/9781107111660_frontmatter.pdf

Published
2024-10-07
How to Cite
Menin, B. (2024). English Beyond Objectivity: The Problem of the Thinker in the Context of Scientific Models. European Journal of Science, Innovation and Technology, 4(4), 287-305. Retrieved from https://ejsit-journal.com/index.php/ejsit/article/view/507
Section
Articles