Analysis of Bearing Capacity of Bored Pile Foundation: Case Study of Jakarta – Bandung Station, Karawang High-Speed Railway

  • Kukuh Mahi Sudrajat
  • Ilham Jumantoro
  • Muhammad Isradi
  • Joewono Prasetijo
  • Andri Irfan Rifai
  • Mohamad Sobirin
Keywords: Bored Pile Foundations, Bearing Capacity, NSPT, Static Loading Test

Abstract

As the fundamental component of a building, the foundation has to be strong and durable since it will carry the weight of the structure as well as additional loads that will be transferred to the soil layer at a specific depth. Therefore, in order for the building above it to stand securely, it is required to assess the bored pile's bearing capacity in order to determine the right bearing capacity value. In this study, the author examines a single pile's bearing capacity utilizing Boring Log (SPT) data. This data will then be computed using the Reese & Wright (1977) and Meyerhof (1976) methods. Static loading test data is the foundation for bearing capacity analysis, and it is analyzed using the Davisson and Mazurkiewicz methods. An analysis of the bearing capacity of a single bored pile foundation at the Karawang High-Speed Railway Station project using the Meyerhof method and boring log (SPT) data yielded an average bearing capacity value of 674.30 tons. Using the Reese & Wright method, the average bearing capacity value was 713.70 tons. The results of the analysis of the bearing capacity of group piles from the three methods, namely Los Angeles, Converse-Labarre, and Seiler-Keeney, on PC18C (BH-1) obtained an average value of 1,329.41 tons on PC13C (BH-2) obtained an average value of the average value is 1,344.36 tons, in PC2D (BH-4) the average value is 2,611.48 tons. The average bearing capacity value, as determined by the Mazurkiewicz technique and the Davisson method using static loading test data, is 533.19 tons and 594.48 tons, respectively. The PDA test results show an average bearing capacity rating of 673.65 tons.

References

Abdila, S. R., Abdullah, M. M. A. B., Ahmad, R., Rahim, S. Z. A., Rychta, M., Wnuk, I., Nabiałek, M., Muskalski, K., Tahir, M. F. M., Syafwandi, Isradi, M., & Gucwa, M. (2021). Evaluation on the Mechanical Properties of Ground Granulated Blast Slag (GGBS) and Fly Ash Stabilized Soil Zia Geopolymer Process. Materials, 14(11), 1–19. https://doi.org/10.3390/ma14112833
Abdila, S. R., Syafwandi, Isradi, M., Sobirin, M., & Hidayat, A. (2020). Soil Stabilization Using Gypsum and The Effect Based on The Unconfined Compressve Strength Values. Proceedings of the International Conference on Industrial Engineering and Operations Management, 59, 3338–3345.
Al-abboodi, I., Sabbagh, T. T., & Al-salih, O. (2020). Response of Passively Loaded Pile Groups-an Experimental Study. Geomechanics and Engineering, 20(4), 333–343.
Dina, D., Della Menanda, I., Pratama, I. A., Ramadhani, K. M., & Sumiati, M. (2021). Perspektif Ekologi Administrasi: Pembangunan Insfrastruktur Kereta Api Cepat Jakarta-Bandung. Neo Politea, 2(1), 1–10.
Hardiyatmo, H. C. (2019). Road Pavement Design and Soil Investigation. Gadjah Mada University Press.
Kadarisman, M. (2018). Kebijakan Transportasi Kereta Cepat Jakarta Bandung Dalam Mewujudkan Angkutan Ramah Lingkungan. Jurnal Manajemen Transportasi & Logistik (JMTRANSLOG), 4(3), 251–266.
Kong, D., Deng, M., & Li, Y. (2020). Experimental Study on Mechanical Deformation Characteristics of Inclined and Straight Alternating Pile Groups. Advances in Civil Engineering, 2020(1), 8394182.
Liu, S., Zhang, Q., & Feng, R. (2021). Model Test Study on Bearing Capacity of Nonuniformly Arranged Pile Groups. International Journal of Geomechanics, 21(10), 4021200.
Prakash, S., & Sharma, H. D. (1991). Pile Foundations in Engineering Practice. John Wiley & Sons.
Rochmatullah, H. F. N. (2024). Analisis Perencanaan Fondasi Tiang Pancang dengan Variasi Diameter pada Tower Pegadaian. Universitas Islam Indonesia.
Sudrajat, K. M., Isradi, M., Prasetijo, J., Aden, T. S., & Rifai, A. I. (2023a). Stabilization of Expansive Clay with Sand on CBR Value. European Journal of Science, Innovation and Technology, 3(5), 1–8.
Sudrajat, K. M., Nuraini, A., Isradi, M., Prasetijo, J., & Hamid, A. (2023b). Effect of Fly Ash Addition in West Jakarta Cengkareng Area Soil on CBR Value. Engineering and Technology Journal, 8(9), 2795–2800. https://doi.org/10.47191/etj/v8i9.11
Susanto, A., Renaningsih, R., & Candrarini, R. A. (n.d.). Perencanaan Fondasi Tiang Bor Abutment Jembatan Kali Kendeng (Perbandingan Metode Meyerhof dan Metode Reese & Wright). Dinamika Teknik Sipil: Majalah Ilmiah Teknik Sipil, 13(2), 30–36.
Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil Mechanics in Engineering Practice. John Wiley & Sons.
Yamin, M., & Windymadaksa, S. (2017). Pembangunan Kereta Cepat Jakarta-Bandung Sebagai Mercusuar Hubungan Indonesia-Tiongkok. Jurnal Politik Profetik, 5(2), 200–218.
Published
2024-09-09
How to Cite
Sudrajat, K. M., Jumantoro, I., Isradi, M., Prasetijo, J., Rifai, A. I., & Sobirin, M. (2024). Analysis of Bearing Capacity of Bored Pile Foundation: Case Study of Jakarta – Bandung Station, Karawang High-Speed Railway. European Journal of Science, Innovation and Technology, 4(4), 145-161. Retrieved from https://ejsit-journal.com/index.php/ejsit/article/view/499
Section
Articles