Molecular Basis for Adhesion and Biofilm Formation in Urinary Tract Infections

  • Abdurrahman Ahmad Sadiq Department of Histopathology, Faculty of Basic Clinical Science, College of Medical Sciences Abubakar Tafawa Balwa University Bauchi, Nigeria
  • Mudathir Qossim Department of Medical Microbiology, Faculty of Basic Clinical Science, College of Medical Sciences Abubakar Tafawa Balwa University Bauchi, Nigeria https://orcid.org/0009-0001-5892-6426
  • Maryam Bappah Adamu Department of Medical Microbiology, Faculty of Basic Clinical Science, College of Medical Sciences Abubakar Tafawa Balwa University Bauchi, Nigeria https://orcid.org/0000-0002-1321-1558
  • Shaibu Usman Yahaya Department of Medical Microbiology, Faculty of Basic Clinical Science, College of Medical Sciences Abubakar Tafawa Balwa University Bauchi, Nigeria https://orcid.org/0000-0002-6116-0441
  • Dauda Eneyamire Suleiman Department of Histopathology, Faculty of Basic Clinical Science, College of Medical Sciences Abubakar Tafawa Balwa University Bauchi, Nigeria
  • Ahmed Kolawole Jimoh Department of Medical Microbiology, Faculty of Basic Clinical Science, College of Medical Sciences Abubakar Tafawa Balwa University Bauchi, Nigeria https://orcid.org/0000-0002-3540-7121
  • Balogun Saheed Ademola Department of Obstetrics and Gynaecology, Abubakar Tafawa Balwa University Teaching Hospital Bauchi, Nigeria
  • Sambo Bello Zailani Department of Medical Microbiology, Faculty of Basic Clinical Science, College of Medical Sciences Abubakar Tafawa Balwa University Bauchi, Nigeria https://orcid.org/0009-0002-0214-3294
Keywords: biofilm, UTIs, uropathogens, Staphylococcus aureus, Proteus mirabilis, Escherichia coli, Salmonella Typhi, Klebsiella pneumoniae

Abstract

Bacterial biofilms play an important role in urinary tract infections (UTIs), being responsible for persistence infections and drug resistance. Several adhesion factors are involved in attachment of bacterial cells to the urinary tract and biofilm development. Although the distribution of pathogens that cause UTIs is changing. More important is the increase in resistance to some antimicrobial agents. This study aimed to evaluate the molecular basis for adhesion and biofilm formation by the pathogens associated with UTI in ATBUTH Bauchi State, Nigeria. A random sampling method was used to select study participants. Clean catch urine samples of inpatient and outpatient with cases of UTI were collected and bacteriologically analyzed using standard microbiological procedures. Twenty-three of the bacteria isolates were detected to form biofilm which were further identified and antimicrobial susceptibility testing carried out using Vitek 2. Further analysis by PCR for biofilm and adhesion genes detected sfa, mrpA, mrKA and bap genes while ica gene was weakly detected. The most prevalent isolates were Staphylococcus aureus, Proteus mirabilis, Escherichia coli, Salmonella Typhi and Klebsiella pneumoniae. Our findings show that some of the isolated bacteria were susceptible to ampicillin and ceftriaxone but a significant number of them are multi-drug resistant.

References

1. Prakash, D., & Saxena, R. S. (2013). Distribution and antimicrobial susceptibility pattern of bacterial pathogens causing urinary tract infection in urban community of meerut city, India. International scholarly research notices, 2013(1), 749629.
2. Kunin C. M. (1994). Urinary tract infections in females. Clinical infectious diseases, 18(1), 1–12.
3. Feraco, D., Blaha, M., Khan, S., Green, J. M., & Plotkin, B. J. (2016). Host environmental signals and effects on biofilm formation. Microbial pathogenesis, 99, 253-263.
4. Boll, E. J., Struve, C., Boisen, N., Olesen, B., Stahlhut, S. G., & Krogfelt, K. A. (2013). Role of enteroaggregative Escherichia coli virulence factors in uropathogenesis. Infection and immunity, 81(4), 1164-1171.
5. Peirano, G., Mulvey, G. L., Armstrong, G. D., & Pitout, J. D. (2013). Virulence potential and adherence properties of Escherichia coli that produce CTX-M and NDM β-lactamases. Journal of medical microbiology, 62(4), 525-530.
6. Muder, R. R., Brennen, C., Rihs, J. D., Wagener, M. M., Obman, A., Obman, A., ... & Yu, V. L. (2006). Isolation of Staphylococcus aureus from the urinary tract: association of isolation with symptomatic urinary tract infection and subsequent staphylococcal bacteremia. Clinical infectious diseases, 42(1), 46-50.
7. Wilson, M. L., & Gaido, L. (2004). Laboratory diagnosis of urinary tract infections in adult patients. Clinical infectious diseases, 38(8), 1150-1158.
8. Newell, A., Riley, P., & Rodgers, M. (2000). Resistance patterns of urinary tract infections diagnosed in a genitourinary medicine clinic. International journal of STD & AIDS, 11(8), 499-500.
9. Orrett, F. A., & Shurland, S. M. (1998). The changing patterns of antimicrobial susceptibility of urinary pathogens in Trinidad. Singapore medical journal, 39(6), 256-259.
10. Carroll, K. C., Hale, D. C., Von Boerum, D. H., Reich, G. C., Hamilton, L. T., & Matsen, J. M. (1994). Laboratory evaluation of urinary tract infections in an ambulatory clinic. American journal of clinical pathology, 101(1), 100–103.
11. Tilton, R. E., & Tilton, R. C. (1980). Automated direct antimicrobial susceptibility testing of microscopically screened urine cultures. Journal of Clinical Microbiology, 11(2), 157-161.
12. Murray, P. R., Smith, T. B., & McKinney Jr, T. C. (1987). Clinical evaluation of three urine screening tests. Journal of clinical microbiology, 25(3), 467-470.
13. Mudathir Q. et al. (2023). Evaluation of Oxidative Stress Adaptability of Typhoidal Salmonella from Patients Suspected of Enteric Fever in Bauchi, Nigeria. International Journal of Multidisciplinary Research and Publications, 5(9), 138-144.
14. Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M., & Beachey, E. H. (1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. Journal of clinical microbiology, 22(6), 996-1006.
15. Sumana, P., Toleti, S., & Myneni, R. B. (2017). Prevalence of non-fermenting gram negative bacilli infections and their antimicrobial susceptibility pattern in a tertiary care. International Journal of Current Research, 9(12), 63427-6343.
16. Tabatabaei, A., Ahmadi, K., Shabestari, A. N., Khosravi, N., & Badamchi, A. (2021). Virulence genes and antimicrobial resistance pattern in Proteus mirabilis strains isolated from patients attended with urinary infections to Tertiary Hospitals, in Iran. African health sciences, 21(4), 1677–1684.
17. Thilakavathy, P., Priyan, R. V., Jagatheeswari, P. A. T., Charles, J., Dhanalakshmi, V., Lallitha, S., ... & Divya, B. (2015). Evaluation of ica gene in comparison with phenotypic methods for detection of biofilm production by coagulase negative staphylococci in a tertiary care hospital. Journal of clinical and diagnostic research: JCDR, 9(8), DC16.
18. Tarr, C. L., Large, T. M., Moeller, C. L., Lacher, D. W., Tarr, P. I., Acheson, D. W., & Whittam, T. S. (2002). Molecular characterization of a serotype O121: H19 clone, a distinct Shiga toxin-producing clone of pathogenic Escherichia coli. Infection and immunity, 70(12), 6853-6859.
19. Dadashi, M., Nasiri, M. J., Fallah, F., Owlia, P., Hajikhani, B., Emaneini, M., & Mirpour, M. (2018). Methicillin-resistant Staphylococcus aureus (MRSA) in Iran: a systematic review and meta-analysis. Journal of global antimicrobial resistance, 12, 96-103.
20. Azmi, K., Qrei, W., & Abdeen, Z. (2019). Screening of genes encoding adhesion factors and biofilm production in methicillin resistant strains of Staphylococcus aureus isolated from Palestinian patients. BMC genomics, 20, 578.
21. Moghadam, S. O., Pourmand, M. R., & Aminharati, F. (2014). Biofilm formation and antimicrobial resistance in methicillin-resistant Staphylococcus aureus isolated from burn patients, Iran. The Journal of Infection in Developing Countries, 8(12), 1511-1517.
22. Hosseini, M., Shapouri Moghaddam, A., Derakhshan, S., Hashemipour, S. M. A., Hadadi-Fishani, M., Pirouzi, A., & Khaledi, A. (2020). Correlation between biofilm formation and antibiotic resistance in MRSA and MSSA isolated from clinical samples in Iran: a systematic review and meta-analysis. Microbial Drug Resistance, 26(9), 1071-1080.
23. Wang, L., Yu, F., Yang, L., Li, Q., Zhang, X., Zeng, Y., & Xu, Y. (2010). Prevalence of virulence genes and biofilm formation among Staphylococcus aureus clinical isolates associated with lower respiratory infection. Afr J Microbiol Res, 4(23), 2566-2569.
24. Yousefi, M., Pourmand, M. R., Fallah, F., Hashemi, A., Mashhadi, R., & Nazari-Alam, A. (2016). Characterization of Staphylococcus aureus biofilm formation in urinary tract infection. Iranian journal of public health, 45(4), 485.
25. Uribe-García, A., Paniagua-Contreras, G. L., Monroy-Pérez, E., Bustos-Martínez, J., Hamdan-Partida, A., Garzón, J., ... & Vaca, S. (2021). Frequency and expression of genes involved in adhesion and biofilm formation in Staphylococcus aureus strains isolated from periodontal lesions. Journal of Microbiology, Immunology and Infection, 54(2), 267-275.
26. Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., ... & Chen, Q. (2020). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International journal of oral science, 12(1), 8.
27. Prakash, D., & Saxena, R. S. (2013). Distribution and antimicrobial susceptibility pattern of bacterial pathogens causing urinary tract infection in urban community of meerut city, India. International scholarly research notices, 2013(1), 749629.
28. Ochada, N. S., Nasiru, I. A., Thairu, Y., Okanlowan, M. B., & Abdulakeem, Y. O. (2015). Antimicrobial susceptibility pattern of urinary pathogens isolated from two tertiary hospitals in Southwestern Nigeria. African Journal of Clinical and Experimental Microbiology, 16(1), 12-22.
29. Uwaezuoke, J. C., & Ogbulie, J. N. (2006). Antibiotic sensitivity pattern of urinary tract pathogens in Port–Harcourt, Nigeria. Journal of Applied Sciences and Environmental Management, 10(3), 103-107.
30. Abejew, A. A., Denboba, A. A., & Mekonnen, A. G. (2014). Prevalence and antibiotic resistance pattern of urinary tract bacterial infections in Dessie area, North-East Ethiopia. BMC research notes, 7, 687.
31. Merga Duffa, Y., Terfa Kitila, K., Mamuye Gebretsadik, D., & Bitew, A. (2018). Prevalence and antimicrobial susceptibility of bacterial uropathogens isolated from pediatric patients at yekatit 12 hospital medical college, Addis Ababa, Ethiopia. International journal of microbiology, 2018(1), 8492309.
32. Belete, Y., Asrat, D., Woldeamanuel, Y., Yihenew, G., & Gize, A. (2019). Bacterial profile and antibiotic susceptibility pattern of urinary tract infection among children attending Felege Hiwot Referral Hospital, Bahir Dar, Northwest Ethiopia. Infection and drug resistance, 12, 3575-3583.
33. Hillier, S., Roberts, Z., Dunstan, F., Butler, C., Howard, A., & Palmer, S. (2007). Prior antibiotics and risk of antibiotic-resistant community-acquired urinary tract infection: a case–control study. Journal of antimicrobial chemotherapy, 60(1), 92-99.
34. Kostakioti, M., Hultgren, S. J., & Hadjifrangiskou, M. (2012). Molecular blueprint of uropathogenic Escherichia coli virulence provides clues toward the development of anti-virulence therapeutics. Virulence, 3(7), 592-593.
35. Schembri, M. A., Kjærgaard, K., & Klemm, P. (2003). Global gene expression in Escherichia coli biofilms. Molecular microbiology, 48(1), 253-267.
36. Soto, S. M., Smithson, A., Martinez, J. A., Horcajada, J. P., Mensa, J., & Vila, J. (2007). Biofilm formation in uropathogenic Escherichia coli strains: relationship with prostatitis, urovirulence factors and antimicrobial resistance. The Journal of urology, 177(1), 365-368.
37. Naves, P., del Prado, G., Huelves, L., Gracia, M., Ruiz, V., Blanco, J., ... & Soriano, F. (2008). Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains. Microbial pathogenesis, 45(2), 86-91.
38. Tamma, P. D., Aitken, S. L., Bonomo, R. A., Mathers, A. J., Van Duin, D., & Clancy, C. J. (2022). Infectious Diseases Society of America guidance on the treatment of AmpC β-lactamase–producing Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections. Clinical infectious diseases, 74(12), 2089-2114.
Published
2024-08-05
How to Cite
Sadiq, A. A., Qossim, M., Adamu, M. B., Yahaya, S. U., Suleiman, D. E., Jimoh, A. K., Ademola, B. S., & Zailani, S. B. (2024). Molecular Basis for Adhesion and Biofilm Formation in Urinary Tract Infections. European Journal of Science, Innovation and Technology, 4(3), 490-503. Retrieved from https://ejsit-journal.com/index.php/ejsit/article/view/476
Section
Articles