Unveiling the Cosmos: A Multifaceted Search for Extraterrestrial Intelligence (SETI) in the Era of Advanced Technologies

  • Boris Menin Refrigeration Consultant
Keywords: SETI, Extraterrestrial Intelligence, Technosignatures, Electromagnetic Waves, Radio SETI, Optical SETI, Astrobiology, Exoplanets, Drake Equation, Kardashev Scale, Machine Learning, Astrobiological Considerations


The enduring human quest to understand if we are alone in the universe has driven the development of Search for Extraterrestrial Intelligence (SETI) programs for decades. These programs employ a diverse toolkit of techniques aimed at detecting potential technosignatures, or signals indicative of technological activity beyond Earth. This article explores established search methods like electromagnetic wave detection (radio and optical SETI) and Astrobiology (exoplanet search and characterization, interstellar medium studies). It delves into recent advancements that are refining our approach, including revisiting the limitations of the Drake Equation and incorporating the Kardashev Scale into SETI efforts. Additionally, the article highlights the growing role of Astrobiological considerations and machine learning for signal detection in the ever-evolving field of SETI. As we push the boundaries of our knowledge and technology, the combination of these traditional and novel methods holds great promise for unveiling the mystery of life beyond Earth.


Abrevaya, X. C. et al (2016). The Astrobiology Primer v2.0. Astrobiology, 16(8), 1-93. https://doi.org/10.1089/ast.2015.1460

Alizadeh, M. et al (2019). Remote Monitoring of Human Vital Signs Using mm-Wave FMCW Radar. IEEE Access, 7, 54958-54968. https://www.weizmann.ac.il/math/yonina/sites/math.yonina/files/Remote_Monitoring_of_Human_Vital_Signs_Using_mm-Wave_FMCW_Radar.pdf

Cabrol, N. A. (2016). Alien Mindscapes—A Perspective on the Search for Extraterrestrial Intelligence. Astrobiology, 16(9), 661–676. https://doi.org/10.1089/ast.2016.1536

Cornell, J. W. (2014). Mapping disciplinary relationships in Astrobiology: 2001-2012. Western Washington University, Western CEDAR. https://cedar.wwu.edu/cgi/viewcontent.cgi?article=1386&context=wwuet

Coughlin, M. W. et al (2019). GROWTH on S190425z: Searching thousands of square degrees to identify an optical or infrared counterpart to a binary neutron star merger with the Zwicky Transient Facility and Palomar Gattini IR. 1-19. https://arxiv.org/pdf/1907.12645

Das, A., Bizzocchi, L., & Ugliengo, P. (2022). Exploring the Chemical Universe. Frontiers in Astronomy and Space Sciences, 9, 839076. https://www.researchgate.net/publication/359405122_Editorial_Exploring_the_Chemical_Universe

Dick, S. J. (2013). The Societal Impact of Extraterrestrial Life: The Relevance of History and the Social Sciences. In D. A. Vakoch (Ed.), Astrobiology, History, and Society. Advances in Astrobiology and Biogeophysics (pp. 227–257). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-35983-5_12

Drake, F., & Sobe, D. (2010). The Origin of the Drake Equation. Astronomy Beat, 46, 1-4. https://astrosociety.org/file_download/inline/58ee6041-5f61-4f88-8b15-d2d3d22ab83d

Fortney, J. J. (2024). Characterizing Exoplanetary Atmospheres. 1-9. https://arxiv.org/pdf/2405.04587

Frank, A., & Sullivan, W.T. (2016). A New Empirical Constraint on the Prevalence of Technological Species in the Universe. Astrobiology, 16(5), 359-362. https://arxiv.org/pdf/1510.08837

Fremling, C. et al (2020). The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs. The Astrophysical Journal, 895(32), 1-19. https://iopscience.iop.org/article/10.3847/1538-4357/ab8943/pdf

Gajjar, V. et al (2020). The Breakthrough Listen Search for Extraterrestrial Intelligence. Astro2020 Activity. Project or State of the Profession (APC) White Paper, 1-14. https://arxiv.org/pdf/1907.05519

Glover, S. C. O. (2011). The Chemistry of the Early Universe. The Molecular Universe, Proceedings IAU Symposium, 280, 313-324 https://doi.org/10.1017/S1743921311025075

Gowanlock, M. G., & Morrison, I. S. (2018). The Habitability of our Evolving Galaxy. 1-26. https://arxiv.org/abs/1802.07036

Gundu, S. R. & Charanarur, P. (2024). Using Artificial Intelligence in the Search for Extraterrestrial Intelligence: Tetra Toroid. Cambridge Scholars Publishing, Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK. https://www.cambridgescholars.com/resources/pdfs/978-1-5275-6361-2-sample.pdf

Gutowska, M., Scriney, M., & McCarren, A. (2020). Identifying extra-terrestrial intelligence using machine learning. 1-12. https://doras.dcu.ie/24020/1/paper_identifying_extra-terrestrial_intelligence_using_machine_learning.pdf

Haqq-Misra, J. et al (2022). Searching for technosignatures in exoplanetary systems with current and future missions. Acta Astronautica, 198, 194-207. https://www.sciencedirect.com/science/article/pii/S0094576522002594

Heller, R. (2014). Formation, Habitability, and Detection of Extrasolar Moons. Astrobiology, 14(9), 1-38. https://doi.org/10.1089/ast.2014.1147

Hippke, M. (2018). Interstellar communication. I. Maximized data rate for lightweight space-probes. International Journal of Astrobiology, 18(3), 1-13. https://doi.org/10.1017/S1473550417000507

Hippke, M. (2021). Searching for Interstellar Quantum Communications. The Astronomical Journal, 162(1), 1-11. https://iopscience.iop.org/article/10.3847/1538-3881/abf7b7/pdf

Hossain, K. A. (2023). Analysis of present and future use of artificial intelligence (AI) in line of fouth industrial revolution (4IR). Scientific Research Journal, XI(VIII), 1-50. https://www.scirj.org/aug-2023-paper.php?rp=P0823954

Huston, M. J., & Wright, J. T. (2022). SETI in 2021. 1-10. https://arxiv.org/abs/2203.11172

Irwin, L. N., & Schulze-Makuch, D. (2020). The Astrobiology of Alien Worlds: Known and Unknown Forms of Life. Universe, 6(9), 1-32 http://dx.doi.org/10.3390/universe6090130

Kardashev, N. S. (1964). Transmission of Information by Extraterrestrial Civilizations. Astronomical Journal, 41(2), 282–287.

Korpela, E., Werthimer, D., Anderson, D., Cobb, J., & Lebofsky, M. (2001). SETI@home—Massively distributed computing for SETI. Computing in Science & Engineering, 3(1), 78 - 83. https://doi.org/10.1109/5992.895191

Lacki, B. C. et al (2021). One of Everything: The Breakthrough Listen Exotica Catalog. The Astrophysical Journal Supplement Series, 257(2), 1-53. https://iopscience.iop.org/article/10.3847/1538-4365/ac168a/pdf

Lammer, H. (2014). The Science of Exoplanets and their Systems. 1-61. https://www.issibern.ch/programs/Forums/exoplanets_forum.pdf

Loeb, A. (2022). A fresh approach to the search for extraterrestrial intelligence (SETI). 1-54. https://lweb.cfa.harvard.edu/~loeb/Fresh_SETI.pdf

Lustig-Yaeger, J. (2019). The Detectability and Characterization of the TRAPPIST-1 Exoplanet Atmospheres with JWST. The Astronomical Journal, 158(1), 1-28. https://doi.org/10.3847/1538-3881/ab21e0

Maire, J. (2016). A near-infrared SETI experiment: commissioning, data analysis, and performance results. 1-13. https://technosearch.seti.org/sites/default/files/2018-09/Maire%26Wright_SPIE_2016_NIROSETIv3.6.pdf

Maire, J. et al (2019). Search for Nanosecond Near-infrared Transients around 1280 Celestial Objects. The Astronomical Journal, 158(5), 1-10. https://doi.org/10.3847/1538-3881/ab44d3

Margot, J.-L. (2019). The radio search for technosignatures in the decade 2020–2030. Astro2020 Science White Paper, 1-9. https://assets.pubpub.org/k4uoa8a6/31598544263195.pdf

Margot, J.-L. et al (2018). A Search for Technosignatures from 14 Planetary Systems in the Kepler Field with the Green Bank Telescope at 1.15–1.73 GHz. The Astronomical Journal, 155(5), 1-9. https://doi.org/10.3847/1538-3881/aabb03

McKay, C. P. (2014). Requirements and limits for life in the context of exoplanets. Proc. Natl. Acad. Sci. U S A, 111(35), 12628–12633. https://doi.org/10.1073/pnas.1304212111

Menin, B. M. (2019). The Problem of Identifying Possible Signals of Extra-Terrestrial Civilizations in the Framework of the Information-Based Method. Journal of Applied Mathematics and Physics, 7(10), 2157-2168. https://www.scirp.org/Journal/paperinformation.aspx?paperid=95549

Neslusan, L., Ivanova, O., Husarik, M., Svoren, J., & Krisandova, Z. S. (2016). Dust productivity and impact collision of the asteroid (596) Scheila. Planetary and Space Science, 125, 37-42. http://dx.doi.org/10.1016/j.pss.2016.01.017

Pinchuk, P. еt al (2019). A Search for Technosignatures from TRAPPIST-1, LHS 1140, and 10 Planetary Systems in the Kepler Field with the Green Bank Telescope at 1.15–1.73 GHz. The Astronomical Journal, 157(122), 1-13. https://mel.epss.ucla.edu/jlm/publications/Pinchuk19.aj157.technosignatures.pdf

Pinchuk, P., & Margot, J.-L. (2022). A Machine Learning–based Direction-of-origin Filter for the Identification of Radio Frequency Interference in the Search for Technosignatures. The Astronomical Journal, 163(2), 1-19. https://iopscience.iop.org/article/10.3847/1538-3881/ac426f/pdf

Poduval, B., K. MPitman, M., & Verkhoglyadova, O. (2023). Applications of statistical methods and machine learning in the space sciences. Front. Astron. Space Sci., 10, 1-5. https://www.frontiersin.org/articles/10.3389/fspas.2023.1163530/full

Prantzos, N. (2021). The search for extraterrestrial intelligences and the Fermi Paradox. Cambridge University Press, Education and Heritage in the era of Big Data in Astronomy Proceedings IAU Symposium, 367, 332-335. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/F041DA9409C3E262BB0149FEE6F89D63/S174392132100106Xa.pdf/the-search-for-extraterrestrial-intelligences-and-the-fermi-paradox.pdf

Price, D. C. et al (2020). The Breakthrough Listen Search for Intelligent Life: Observations of 1327 Nearby Stars Over 1.10–3.45 GHz. The Astronomical Journal, 159(3), 1-16. https://doi.org/10.3847/1538-3881/ab65f1

Reines, A. E., & Marcy, G. W. (2002). Optical Search for Extraterrestrial Intelligence: A Spectroscopic Search for Laser Emission. Astronomical Society of the Pacific, 114(794), 416-426. https://doi.org/10.1086/342496

Seager, S. (2010). Exoplanet Atmospheres: Physical Processes. Princeton University Press. ISBN: 978-1-4008-3530-0

Silverberg, S. M. et al (2016). A new m dwarf debris disk candidate in a young moving group discovered with disk detective. 1-6. https://arxiv.org/pdf/1610.05293

Tabeshian, M., & Wiegert, P. A. (2016). Detection and characterization of extrasolar planets through mean-motion resonances. I. Simulations of hypothetical debris disks. The Astrophysical Journal, 818(159), 1-16. https://physics.uwo.ca/~pwiegert/papers/2016ApJ.pdf

Tarter, J. (2001). The search for extraterrestrial intelligence (SETI). Annu. Rev. Astron. Astrophys, 39, 511–548. https://web.archive.org/web/20111215223712id_/http://frank.harvard.edu:80/~howard/papers/SETI_review_tarter_ARAA.pdf

Tellis, N. K., & Marcy, G. W. (2017). A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars. The Astronomical Journal, 153(6), 1-24. https://doi.org/10.3847/1538-3881/aa6d12

Thaddeus, P. (2006). The prebiotic molecules observed in the interstellar gas. Phil. Trans. R. Soc. B, 361, 1681–1687. https://doi.org/10.1098/rstb.2006.1897

Tingay, S. J., Tremblay, C. D., & Croft, S. (2018). A Search for Extraterrestrial Intelligence (SETI) toward the Galactic Anticenter with the Murchison Widefield Array. The Astrophysical Journal, 856(31), 1-5. https://iopscience.iop.org/article/10.3847/1538-4357/aab363/pdf

Turbet, M. et al (2020). A review of possible planetary atmospheres in the TRAPPIST-1 system, 1-55. https://arxiv.org/abs/2007.03334

Tusay, N. et al (2022). A Search for Radio Technosignatures at the Solar Gravitational Lens Targeting Alpha Centauri. The Astronomical Journal, 164(116), 1-13. https://iopscience.iop.org/article/10.3847/1538-3881/ac8358/pdf

Vakoch, D. (2013). Astrobiology, history, and society: life beyond Earth and the impact of discovery. Springer. https://library.lol/main/3523695B696E0A0D73BEDD9191D203E6

Vakoch, D. A. (2011). Psychology of space exploration: contemporary research in historical perspective. National Aeronautics and Space Administration, NASA SP-2011-4411, 1-266, RC1160.P79 2009. https://www.nasa.gov/wp-content/uploads/2015/04/607107main_psychologyspaceexploration-ebook.pdf?emrc=e622bc

Venkatesh, A. M. & Venkatesha, R. A. (2024). Navigating the Cosmic Symphony: A Comprehensive Review of Advancements in Radio-Based Exploration for Extraterrestrial Intelligence. Anna University Regional Campus; Indian Institute of Technology (IIT), 1-39. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4708832

Welch, J. et al. (2009). The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI. Proceedings of the IEEE, 97(8), 1438–1447. https://arxiv.org/abs/0904.0762

Westby, T., & Conselice, C. J. (2020). The Astrobiological Copernican Weak and Strong Limits for Intelligent Life. The Astrophysical Journal, 896(58), 1-18. https://doi.org/10.3847/1538-4357/ab8225

Wisian, K. W., & Traphagan, J. W. (2020). The Search for Extraterrestrial Intelligence: A Realpolitik Consideration. Space Policy, 52, 101377, 1-6. https://doi.org/10.1016/j.spacepol.2020.101377

Wright, J.T. (2021). Strategies and Advice for the Search for Extraterrestrial Intelligence. Acta Astronautica, 188, 203-214. https://doi.org/10.1016/j.actaastro.2021.07.021

Zackrisson, E., Korn, A. J., Wehrhahn, A., & Reiter, J. (2018). SETI with Gaia: The Observational Signatures of Nearly Complete Dyson Spheres. The Astrophysical Journal, 862(21), 1-7. https://doi.org/10.3847/1538-4357/aac386

How to Cite
Menin, B. (2024). Unveiling the Cosmos: A Multifaceted Search for Extraterrestrial Intelligence (SETI) in the Era of Advanced Technologies. European Journal of Science, Innovation and Technology, 4(3), 228-244. Retrieved from https://ejsit-journal.com/index.php/ejsit/article/view/448