Power Efficient Wireless System for Measurement of Cardiovascular Parameters

  • Shatrughna Prasad Yadav
  • Devathi Jyothirmai
  • D. Cavin Augustus Sahay
  • CH. Uday Sai
Keywords: Power Efficient Wireless Systems, Continuous measurement, Cardiovascular parameters, Single limb, Sensors, Signal processing techniques, Real-time measurements, Remote patient monitoring


Power efficient systems offer low operational cost, protect environment by reducing the consumption of natural resources, contribute to sustainable development, and promote economic prosperity. In this paper, a power efficient wireless system for measurement of cardiovascular parameters has been designed and tested. The system integrates sensors to monitor key physiological metrics such as heart rate, blood pressure, and oxygen saturation. Utilizing advanced signal processing techniques, it accurately extracts vital cardiovascular data while minimizing power consumption, ensuring prolonged operation without compromising performance. The wireless communication module enables seamless transmission of real-time measurements to a central monitoring unit, facilitating remote patient monitoring and healthcare interventions. By focusing on a single limb, the system optimizes sensor placement for enhanced accuracy and user comfort. Furthermore, its low-power design enhances portability and reduces the need for frequent battery replacements, making it suitable for continuous long-term monitoring in various clinical and home-based settings. Overall, this system offers a promising solution for efficient and reliable cardiovascular parameter monitoring, with potential applications in telemedicine, healthcare, and wellness monitoring.


Aliverti, A. (2018). Wearable Technology: role in respiratory health and disease. Breathe, 13, e27-e36.
Arun, C. S. & Alexander, A. (2017). Mobile ECG monitoring device using wearable non contact armband. In Proc. Int. Conf. Circuit, Power Comput. Technol. (ICCPCT), pp. 1 4.
Casas, O., Spinelli, E. M., & Pallas-Areny, R. (2009). Fully differential ACcoupling networks: A comparative study. IEEE Trans. Instrum. Meas., 58(1), 94–98.
de Lepper, A. G. W., Buck, C. M. A., van 't Veer, M., Huberts, W., van de Vosse, F. N., & Dekker, L. R. C. (2022). From evidence-based medicine to digital twin technology for predicting ventricular tachycardia in ischaemic cardiomyopathy. Journal of the Royal Society, Interface, 19(194), 20220317. https://doi.org/10.1098/rsif.2022.0317
Gautham, A. & Raj, V. K. (2016). Designing of a single arm single lead ECG system for wet and dry electrode: A comparison with traditional system. Biomed. Eng., Appl., Basis Commun., 28(3).
Hernández-Urrea, M., Casanella, R., Javierre, C., & Casas, O. (2023). An easy-to-use hand-to-hand impedance-based sensor to obtain carotid pulse arrival time. IEEE Sensors J., 23(5), 5362–5369.
Hose, D. R., Lawford, P. V., Huberts, W., Hellevik, L. R., Omholt, S. W., & van de Vosse, F. N. (2018). Cardiovascular Models for personalised medicine: where now and where next?. Med Eng Phys., 72, 38-48.
Karunadas, C. P., & Mathew, C. (2020). Comparison of arrhythmia detection by conventional Holter and a novel ambulatory ECG system using patch and Android App, over 24 h period. Indian Pacing Electrophysiol. J., 20(2), 49–53.
King, R. C., Villeneuve, E., White, R. J., Sherratt, R, S., Holderbaum, W., & Harwin, W. S. (2018). Application of data fusion techniques and technologies for wearable health monitoring. Med Eng Phys., 42, 1-12.
Le, T., Ellington, F., Lee, T.-Y., Vo, K., Khine, M., Krishnan, S. K., Dutt, N., & Cao, H. (2020). Continuous non-invasive blood pressure monitoring: A methodological review on measurement techniques. IEEE Access, 8, 212478–212498.
Martínez-Suárez, F., García-Limón, J. A., Baños-Bautista, J. E., Alvarado-Serrano, C., & Casas, O. (2023). Low-Power Long-Term Ambulatory Electrocardiography Monitor of Three Leads with Beat-to-Beat Heart Rate Measurement in Real Time. Sensors (Basel, Switzerland), 23(19), 8303.
Peck, J., Wishon, M. J., Wittels, H., Lee, S. J., Hendricks, S., Davila, H., & Wittels, S. H. (2021). Single limb electrocardiogram using vector mapping: Evaluation and validation of a novel medical device. J. Electrocardiol, 67, 136–141.
Rahman, M.Z.U., Surekha, S., Satamraju, K.P., Mirza, S.S., & Lay-Ekuakille, A. (2021). A collateral sensor data sharing framework for decentralized healthcare systems. IEEE Sensors J, 21(24), 27848–27857.
Solà, J., Vetter, R., Renevey, P., Chételat, O., Sartori, C., & Rimoldi, S. F. (2009). Parametric estimation of pulse arrival time: a robust approach to pulse wave velocity. Physiologi. Meas., 30(7), 603–615.
Tlili, M., Ben-Romdhane, M., Maalej, A., Rivet, F., Dallet, D., & Rebai, C. (2018). Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement. Measurement, 124, 413–425.
Yadav, S. P. & Ravindra, P. (2019). Comparative Study of Obstacle Distance Measurement with Ultrasonic Sensor using Internet of Things Development Boards. International Journal of Research in Electronics and Computer Engineering (IJRECE), 7(1), 2324–2328.
Yadav, S. P. & Ravindra, P. (2019). Internet of Things Enabled Smart Grid for Optimized Asset Utilization. International Journal of Research in Electronics and Computer Engineering (IJRECE), 7(2), 1976–1981.
Yadav, S. P. (2018). Internet of Things for Smart Living. J Innov Electron Commun Eng., 9(1), 10–12.
How to Cite
Yadav, S. P., Jyothirmai, D., Sahay, D. C. A., & Sai, C. U. (2024). Power Efficient Wireless System for Measurement of Cardiovascular Parameters . European Journal of Science, Innovation and Technology, 4(2), 288-297. Retrieved from https://ejsit-journal.com/index.php/ejsit/article/view/415