Application of Artificial Intelligence (AI) to GSM Operations

  • Bodunrin Isa Bakare
  • Malcolm Solomon Ekolama
Keywords: Mobile, GSM, Call, Cellular Network, Gateway, Communication, Artificial Neural Network, GSM Operation, Predictive maintenance

Abstract

The growth of IoT devices, mobile data, and the adoption of 5G technology have presented Global System for Mobile Communications (GSM) operators with challenging obstacles. As such, the use of artificial intelligence (AI) has become a pivotal facilitator in improving the effectiveness and reliability of GSM networks. This article examines the novel implementation of artificial intelligence (AI) in GSM operations, emphasising the profound revolution it has brought within the telecommunications sector. Using AI technologies to promote predictive maintenance, enhance customer experience, establish robust fraud detection systems, optimise network resources, and implement environmentally conscious energy management practices are all components of the objective to revolutionise GSM networks. Predictive maintenance methodologies guarantee continuous service provision and reduce periods of inactivity, whereas AI-powered analytics and customised services cultivate client satisfaction and loyalty. Network optimisation entails the deliberate distribution of resources in a manner that maximises spectral efficiency while minimising interference. As seen from the study, explainable AI (XAI) provides exciting opportunity for additional breakthroughs in GSM operations.

References

Abdel Hakeem, S. A., Hussein, H. H., & Kim, H. (2022). Security requirements and challenges of 6G technologies and applications. Sensors, 22(5), 1969.
Ahammed, T. B., & Patgiri, R. (2020, December). 6G and AI: The emergence of future forefront technology. In 2020 Advanced Communication Technologies and Signal Processing (ACTS) (pp. 1-6). IEEE.
Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwannarat, K., & Mukhopadhyay, S. C. (2023). Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends. Sensors, 23(11), 5206.
Allioui, H., & Mourdi, Y. (2023). Exploring the Full Potentials of IoT for Better Financial Growth and Stability: A Comprehensive Survey. Sensors, 23(19), 8015.
Antonopoulos, I., Robu, V., Couraud, B., Kirli, D., Norbu, S., Kiprakis, A., ... & Wattam, S. (2020). Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews, 130, 109899.
Aouedi, O., Piamrat, K., & Parrein, B. (2022). Intelligent traffic management in next-generation networks. Future internet, 14(2), 44.
Bakare, B. I., & Ekolama, S. M. (2021). Preventing man-in-the-middle (MITM) attack of GSM calls. European Journal of Electrical Engineering and Computer Science, 5(4), 63-68.
Bonham, E., McMaster, K., Thomson, E., Panarotto, M., Müller, J. R., Isaksson, O., & Johansson, E. (2020). Designing and integrating a digital thread system for customized additive manufacturing in multi-partner kayak production. Systems, 8(4), 43.
Borralho, R., Mohamed, A., Quddus, A. U., Vieira, P., & Tafazolli, R. (2021). A survey on coverage enhancement in cellular networks: Challenges and solutions for future deployments. IEEE Communications Surveys & Tutorials, 23(2), 1302-1341.
Carrillo Melgarejo, D. (2023). Improving the design of cellular networks beyond 5G for smart grids.
Chen, H., Li, L., & Chen, Y. (2021). Explore success factors that impact artificial intelligence adoption on telecom industry in China. Journal of Management Analytics, 8(1), 36-68.
Cheng, J. C., Chen, W., Chen, K., & Wang, Q. (2020). Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Automation in Construction, 112, 103087.
Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 8211.
Ericsson (n.d.). Data and Analytics for powerful insights. Online. Retrieved from https://www.ericsson.com/en/oss bss/data analytics?gad_source=1&gclid=EAIaIQobChMIva6K9padgwMVW2BBAh2v5wMeEAAYAiAAEgLnGPD_BwE&gclsrc=aw.ds
Esenogho, E., Djouani, K., & Kurien, A. M. (2022). Integrating artificial intelligence Internet of Things and 5G for next-generation smartgrid: A survey of trends challenges and prospect. IEEE Access, 10, 4794-4831.
Frederick, B. (2022). Artificial Intelligence in Computer Networks: Role of AI in Network Security (Master's thesis).
Fu, S., & Avdelidis, N. P. (2023). Prognostic and Health Management of Critical Aircraft Systems and Components: An Overview. Sensors, 23(19), 8124.
Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., ... & Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514.
Hajji, T., Fihri, A. F., Hassani, I. E., Kassimi, S., & Hajjoubi, C. E. (2023, February). Enhancing Comfort and Security: A Chatbot-Based Home Automation System with Integrated Natural Language Processing and IoT Components. In International Conference on Artificial Intelligence & Industrial Applications (pp. 98-107). Cham: Springer Nature Switzerland.
Hamdan, S., Ayyash, M., & Almajali, S. (2020). Edge-computing architectures for internet of things applications: A survey. Sensors, 20(22), 6441.
Haq, I. U., Rahman, Z. U., Ali, S., & Faisal, M., (2017). GSM Technology: Architecture, Security and Future Challenges. International Journal of Science Engineering and Advance Technology, IJSEAT, 5(1), 70-74.
Hassan, A. N., Al-Chlaihawi, S., & Khekan, A. R. (2021). Artificial intelligence techniques over the fifth generation (5G) mobile networks. Indonesian Journal of Electrical Engineering and Computer Science, 24(1), 317-328.
Himeur, Y., Elnour, M., Fadli, F., Meskin, N., Petri, I., Rezgui, Y., ... & Amira, A. (2023). AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artificial Intelligence Review, 56(6), 4929-5021.
Hussain, F., Hassan, S. A., Hussain, R., & Hossain, E. (2020). Machine learning for resource management in cellular and IoT networks: Potentials, current solutions, and open challenges. IEEE communications surveys & tutorials, 22(2), 1251-1275.
Ighneiwa, I., & Mohamed, H. (2017). Bypass Fraud Detection: Artificial Intelligence Approach. ArXiv, abs/1711.04627.
Ilager, S., Muralidhar, R., & Buyya, R. (2020, October). Artificial intelligence (ai)-centric management of resources in modern distributed computing systems. In 2020 IEEE Cloud Summit (pp. 1-10). IEEE.
Ji, B., Wang, Y., Song, K., Li, C., Wen, H., Menon, V. G., & Mumtaz, S. (2021). A survey of computational intelligence for 6G: Key technologies, applications and trends. IEEE Transactions on Industrial Informatics, 17(10), 7145-7154.
Karlsson, M. (2021). Ericsson and AWS partner to support CSPs on their journey to cloud BSS. Online. Retrieved from https://www.ericsson.com/en/blog/2021/5/ericsson-and-aws-partner-to-support-csps-on-their-journey-to-cloud-bss
Khan, M. A., Saleh, A. M., Waseem, M., & Sajjad, I. A. (2022). Artificial Intelligence Enabled Demand Response: Prospects and Challenges in Smart Grid Environment. IEEE Access, 11, 1477-1505.
Lee, J., Ni, J., Singh, J., Jiang, B., Azamfar, M., & Feng, J. (2020). Intelligent maintenance systems and predictive manufacturing. Journal of Manufacturing Science and Engineering, 142(11), 110805.
Liu, J., Wang, S., Zhou, A., Kumar, S. A., Yang, F., & Buyya, R. (2016). Using proactive fault-tolerance approach to enhance cloud service reliability. IEEE Transactions on Cloud Computing, 6(4), 1191-1202.
Ma, B., Guo, W., & Zhang, J. (2020). A survey of online data-driven proactive 5G network optimisation using machine learning. IEEE access, 8, 35606-35637.
Mahmood, M. R., Matin, M. A., Sarigiannidis, P., & Goudos, S. K. (2022). A comprehensive review on artificial intelligence/machine learning algorithms for empowering the future IoT toward 6G era. IEEE Access, 10, 87535-87562.
Mahmoud, M. A., Md Nasir, N. R., Gurunathan, M., Raj, P., & Mostafa, S. A. (2021). The current state of the art in research on predictive maintenance in smart grid distribution network: Fault’s types, causes, and prediction methods—A systematic review. Energies, 14(16), 5078.
Mariciuc, D. F. (2023). A Bibliometric Analysis of Publications on Customer Service Chatbots. Management Dynamics in the Knowledge Economy, 11(1), 48-62.
Mboli, J. S., Thakker, D., & Mishra, J. L. (2023). Artificial Intelligence-Powered Decisions Support System for Circular Economy Business Models. In ICEIS (1) (pp. 656-666).
Mirsky, Y., Demontis, A., Kotak, J., Shankar, R., Gelei, D., Yang, L., ... & Biggio, B. (2023). The threat of offensive ai to organizations. Computers & Security, 124, 103006.
Muhammad, T., Munir, M. T., Munir, M. Z., & Zafar, M. W. (2022). Integrative Cybersecurity: Merging Zero Trust, Layered Defense, and Global Standards for a Resilient Digital Future. International Journal of Computer Science and Technology, 6(4), 99-135.
Neuhofer, B., Buhalis, D., & Ladkin, A. (2015). Smart technologies for personalized experiences: a case study in the hospitality domain. Electronic Markets, 25, 243-254.
Nsafoa‐Yeboah, K., Tchao, E. T., Kommey, B., Agbemenu, A. S., Klogo, G. S., & Akrasi‐Mensah, N. K. (2023). Flexible open network operating system architecture for implementing higher scalability using disaggregated software‐defined optical networking. IET Networks.
Okey, O. D., Melgarejo, D. C., Saadi, M., Rosa, R. L., Kleinschmidt, J. H., & Rodríguez, D. Z. (2023). Transfer learning approach to IDS on cloud IoT devices using optimized CNN. IEEE Access, 11, 1023-1038.
Patil, A., Iyer, S., Lopez, O. L., Pandya, R. J., Pai, K., Kalla, A., & Kallimani, R. (2022). A comprehensive survey on spectrum sharing techniques for 5G/B5G intelligent wireless networks: Opportunities, challenges and future research directions. arXiv preprint arXiv:2211.08956.
Phipps, G. E. (2020). Adoption of Bonded-Cellular Technology (Doctoral dissertation, Indiana State University).
Pooyandeh, M., & Sohn, I. (2021). Edge network optimization based on ai techniques: A survey. Electronics, 10(22), 2830. https://doi.org/10.3390/electronics10222830
Rane, N. (2023). Integrating Leading-Edge Artificial Intelligence (AI), Internet of Things (IoT), and Big Data Technologies for Smart and Sustainable Architecture, Engineering and Construction (AEC) Industry: Challenges and Future Directions. Engineering and Construction (AEC) Industry: Challenges and Future Directions (September 24, 2023).
Roslan, F. A. B. M., & Ahmad, N. B. (2023). The Rise of AI-Powered Voice Assistants: Analyzing Their Transformative Impact on Modern Customer Service Paradigms and Consumer Expectations. Quarterly Journal of Emerging Technologies and Innovations, 8(3), 33-64.
Salh, A., Audah, L., Shah, N. S. M., Alhammadi, A., Abdullah, Q., Kim, Y. H., ... & Almohammedi, A.A. (2021). A survey on deep learning for ultra-reliable and low-latency communications challenges on 6G wireless systems. IEEE Access, 9, 55098-55131.
Salih, A. A., Zeebaree, S. R., Abdulraheem, A. S., Zebari, R. R., Sadeeq, M. A., & Ahmed, O. M. (2020). Evolution of mobile wireless communication to 5G revolution. Technology Reports of Kansai University, 62(5), 2139-2151.
Samdanis, K., Abbou, A. N., Song, J., & Taleb, T. (2023). AI/ML Service Enablers & Model Maintenance for Beyond 5G Networks. IEEE Network.
Sarker, I. H. (2021). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science, 2(5), 377.
Shah, D. (2020). Challenges in AI implementation. Online. Retrieved from https://www.linkedin.com/pulse/challenges-ai-implementation-darshil-shah/
Shamshirband, S., Fathi, M., Chronopoulos, A. T., Montieri, A., Palumbo, F., & Pescapè, A. (2020). Computational intelligence intrusion detection techniques in mobile cloud computing environments: Review, taxonomy, and open research issues. Journal of Information Security and Applications, 55, 102582.
Srivastava, A., Gupta, M. S., & Kaur, G. (2020). Energy efficient transmission trends towards future green cognitive radio networks (5G): Progress, taxonomy and open challenges. Journal of Network and Computer Applications, 168, 102760.
Tyagi, A. K. (Ed.). (2023). Privacy Preservation and Secured Data Storage in Cloud Computing. IGI Global.
Walia, G. K., Kumar, M., & Gill, S. S. (2023). AI-Empowered Fog/Edge Resource Management for IoT Applications: A Comprehensive Review, Research Challenges and Future Perspectives. IEEE Communications Surveys & Tutorials.
Yang, H., Alphones, A., Xiong, Z., Niyato, D., Zhao, J., & Wu, K. (2020). Artificial-intelligence-enabled intelligent 6G networks. IEEE Network, 34(6), 272-280.
Published
2024-01-15
How to Cite
Bakare, B. I., & Ekolama, M. S. (2024). Application of Artificial Intelligence (AI) to GSM Operations. European Journal of Science, Innovation and Technology, 3(6), 482-495. Retrieved from https://ejsit-journal.com/index.php/ejsit/article/view/354
Section
Articles