Towards the Analysis of the Genetic Diversity of Dolichos Lablab (Lablab Purpureus (L.) Sweet) and Identification of Its Rhizosphere Bacteria in Namibia

  • Faith Fransisca Kavishe
  • Jeya Kennedy
  • Percy Chimwamurombe
  • Jean Damascène Uzabakiriho
Keywords: Genetic diversity, Lablab purpureus, SSR, Microsatellite markers, 16s rRNA, rhizosphere, rhizosphere bacteria, Namibia

Abstract

Dolichos lablab (Lablab purpureus (L.) Sweet)) is a multipurpose drought tolerant protein-rich legume crop native to Africa and grown in warm temperate to tropical climates for its edible seeds and manure. Lablab purpureus holds significant benefits to subsistence farmers and offers a great promise for sustainable crop productivity, especially in marginalised areas. Its uses range from human consumption as a vegetable to improving soil fertility, and as forage. Notwithstanding Lablab purpureus crucial potential functions in Namibia, there is currently limited information regarding the plant’s genetic diversity and its rhizospheric bacteria. Assessing the genetic similarity of these varieties through microsatellite analysis will significantly enhance the identification of distinctive ones for subsequent introduction. Future projections show that by 2050 the agricultural products demand for the market will increase by 70% and this will cause challenges for contemporary agriculture. Agricultural practices that make improper use of expensive, and environmentally harmful chemical pesticides and fertilisers are all issues that need to be addressed. Alternative ways of sustainably meeting agricultural demands involve using rhizobacteria or other microbial inoculants for plant growth and development. Understanding the composition of rhizosphere bacteria associated with these plants offers an avenue for discerning their potential contributions to enhancing soil fertility, facilitating nutrient cycling, mitigating disease prevalence, and fostering plant growth.

References

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University Science, 26(1), 1–20. https://doi.org/10.1016/j.jksus.2013.05.001
Antonio, J., Cardenas, G., Mesa, C., Francisco, V., & Agugliaro, M. (2017). Trends in plant research using molecular markers. Planta. https://doi.org/10.1007/s00425-017-2829-y
Barghouthi, S. A. (2011). A Universal Method for the Identification of Bacteria Based on General PCR Primers. Indian Journal of Microbiology, 51(4), 430–444. https://doi.org/10.1007/s12088-011-0122-5
Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & Enshasy, H. El. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(1140), 1–20.
Berg, G., Opelt, K., Zachow, C., Lottmann, J., Götz, M., Costa, R., & Smalla, K. (2006). The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiology Ecology, 56(2), 250–261. https://doi.org/10.1111/j.1574-6941.2005.00025.x
Berta, A., Sumich, J. L., & Kovacs, K. M. (2015). Phylogeny, Taxonomy, and Classification. In Marine Mammals (pp. 17–34). Elsevier. https://doi.org/10.1016/b978-0-12-397002-2.00002-8
Busby, P. E., Soman, C., Wagner, M. R., Friesen, M. L., Kremer, J., Bennett, A., Morsy, M., Eisen, J. A., Leach, J. E., & Dangl, J. L. (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 15(3). https://doi.org/10.1371/journal.pbio.2001793
Chaiharn, M., Chunhaleuchanon, S., Kozo, A., & Lumyong, S. (2008). Screening of Rhizobacteria for Their Plant Growth Promoting Activities. KMITL Science and Technology Journal, 8(1), 18–23.
Chamarthi, S. K., Kumar, A., Vuong, T. D., Blair, M. W., Gaur. P.M, Nguyen, H. T., & Varshney, R. K. (2011). Trait Mapping and Molecular Breeding. In A. Pratap & J. Kumar (Eds.), Biology and Breeding of Food Legumes (pp. 296–313).
de Souza, R., Ambrosini, A., & Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419. https://doi.org/10.1590/S1415-475738420150053
Deschamps, S., Llaca, V., & May, G. D. (2012). Genotyping-by-sequencing in plants. Biology, 1(3), 460–483. https://doi.org/10.3390/biology1030460
Dholakia, H. P., Joshi, M. K., & Delvadiya, I. R. (2019). Molecular characterization of Indian bean (Lablab purpureus L.) genotypes. Journal of Pharmacognosy and Phytochemistry, 8(2), 455–463.
Di Benedetto, N. A., Campaniello, D., Bevilacqua, A., Cataldi, M. P., Sinigaglia, M., Flagella, Z., & Corbo, M. R. (2019). Isolation, screening, and characterization of plant-growth-promoting bacteria from durum wheat rhizosphere to improve N and P nutrient use efficiency. Microorganisms, 7(11), 1–18. https://doi.org/10.3390/microorganisms7110541
Gibson, G., & Spencer, V. M. (2009). A Primer of Genome Science (3rd ed.). Sinauer Associates.
Gyang, P. J., Nyaboga, E. N., & Muge, E. K. (2017). Molecular Characterization of Common Bean (Phaseolus vulgaris L.) Genotypes Using Microsatellite Markers. Journal of Advances in Biology & Biotechnology, 13(2), 1–15. https://doi.org/10.9734/JABB/2017/33519
Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761–2764. https://doi.org/10.1128/JCM.01228-07
Jaskulak, M., Rorat, A., Vandenbulcke, F., Pauwels, M., Grzmil, P., & Plytycz, B. (2022). Polymorphic microsatellite markers demonstrate hybridization and interspecific gene flow between lumbricid earthworm species, Eisenia andrei and E. fetida. Plos one, 17(2), e0262493. https://doi.org/10.1371/journal.pone.0262493
Jo, J. H., Kennedy, E. A., & Kong, H. H. (2016). Research Techniques Made Simple: Bacterial 16S Ribosomal RNA Gene Sequencing in Cutaneous Research. Journal of Investigative Dermatology, 136, e23–e27. https://doi.org/10.1016/j.jid.2016.01.005
Kamotho, G. N., Kinyua, M. G., Muasya, R. M., Gichuki, S. T., & Wanjala, B. W. (2016). Assessment of Genetic Diversity of Kenyan Dolichos Bean (Lablab purpureus L. Sweet) Using Simple Sequence Repeat (SSR) Markers. International Journal of Agriculture, Environment and Bioresearch, 1(01), 26–43.
Kandjimi, O. S., Uzabakiriho, J.-D., & Chimwamurombe, P. M. (2015). Isolation and characterization of culturable bacteria from bulk soil samples and the rhizosphere of arid- adapted Tylosema esculentum (Burchell). A. Schreiber (Marama bean) in Namibia. African Journal of Biotechnology, 14(11), 944–952. https://doi.org/10.5897/AJB2014.14257
Keerthi, C. M., Ramesh, S., Byregowda, M., & Vaijayanthi, P. V. (2018). Simple Sequence Repeat (SSR) Marker Assay-Based Genetic Diversity among Dolichos Bean (Lablab purpureus L. Sweet) Advanced Breeding Lines Differing for Productivity per se Traits. International Journal of Current Microbiology and Applied Sciences, 7(05), 3736–3744. https://doi.org/10.20546/ijcmas.2018.705.433
Majeed, A., Kaleem Abbasi, M., Hameed, S., Imran, A., & Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6(MAR). https://doi.org/10.3389/FMICB.2015.00198
McBenedict, B., Chimwamurombe, P., Kwembeya, E., & Maggs-kölling, G. (2016). Genetic Diversity of Namibian Pennisetum glaucum (L.) R. BR. (Pearl Millet) Landraces Analyzed by SSR and Morphological Markers. The Scientific World Journal, 2016, 1–11.
Minde, J. J., Venkataramana, P. B., & Matemu, A. O. (2020). Dolichos Lablab-an underutilized crop with future potentials for food and nutrition security: a review. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2020.1775173
Moteetee, A. N., & Van Wyk, B. E. (2012). A revision of the genus Dolichos (Fabaceae, Papilionoideae, Phaseoleae), including Lesotho and Swaziland. South African Journal of Botany, 78, 178–194. https://doi.org/10.1016/j.sajb.2011.06.012
Murphy, A. M., & Colucci, P. E. (1999). A tropical forage solution to poor quality ruminant diets: A review of Lablab purpureus. Livestock Research for Rural Development, 11(2), 96–113.
Nazir, N., Kamili, A., Zargar, M., Khan, I., Shah, D., Parray, J., & Tyub, S. (2016). Effect of Root Exudates on Rhizosphere Soil Microbial Communities. ResearchGate, 16, 88–95. https://www.researchgate.net/publication/331876243
Ojha, K. K., Mishra, S., & Singh, V. K. (2021). Computational molecular phylogeny: concepts and applications. In Bioinformatics: Methods and Applications (pp. 67–89). Elsevier. https://doi.org/10.1016/B978-0-323-89775-4.00025-0
Omar, A. F., Abdelmageed, A. H. A., Al-Turki, A., Abdelhameid, N. M., Sayyed, R. Z., & Rehan, M. (2022). Exploring the Plant Growth-Promotion of Four Streptomyces Strains from Rhizosphere Soil to Enhance Cucumber Growth and Yield. Plants, 11(23). https://doi.org/10.3390/plants11233316
Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F. J., & Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169(5–6), 325–336. https://doi.org/10.1016/j.micres.2013.09.011
Raghu, B. R., Samuel, D. K., N, M., & S, A. T. (2018). Dolichos Bean : An underutilized and unexplored crop with immense potential. International Journal of Recent Advances in Multidisciplinary Research, 5(12), 4338–4341.
Rai, N., Kumar, A., Singh, P. K., Singh, M., Datta, D., & Rai, M. (2010). Genetic relationship among Hyacinth bean (Lablab purpureus) genotypes cultivars from different races based on quantitative traits and random amplified polymorphic DNA marker. African Journal of Biotechnology, 9(2), 137–144. https://doi.org/10.4314/ajb.v9i2.
Rezaei, N., & Hedayat, M. (2013). Allele Frequency. Elsevier, 1, 77–78. https://doi.org/10.1016/B978-0-12-374984-0.00032-2
Saeed, Q., Xiukang, W., Haider, F. U., Kučerik, J., Mumtaz, M. Z., Holatko, J., Naseem, M., Kintl, A., Ejaz, M., Naveed, M., Brtnicky, M., & Mustafa, A. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. International Journal of Molecular Sciences, 22(19). https://doi.org/10.3390/ijms221910529
Sheahan, C. M. (2012). Lablab (Lablab purpureus) Plant Guide. http://plants.usda.gov/plantguide/pdf/pg_lapu6.pdf
Sserumaga, J. P., Kayondo, S. I., Kigozi, A., Kiggundu, M., Namazzi, C., Walusimbi, K., Bugeza, J., Molly, A., & Mugerwa, S. (2021). Genome-wide diversity and structure variation among lablab [Lablab purpureus (L.) Sweet] accessions and their implication in a Forage breeding program. In Genetic Resources and Crop Evolution. https://doi.org/10.1007/s10722-021-01171-y
Suriyachadkun, C., Chunhachart, O., Srithaworn, M., Tangchitcharoenkhul, R., & Tangjitjareonkun, J. (2022). Zinc-Solubilizing Streptomyces spp. as Bioinoculants for Promoting the Growth of Soybean (Glycine max (L.) Merrill). Journal of Microbiology and Biotechnology, 32(11), 1435–1446. https://doi.org/10.4014/jmb.2206.06058
Tanaseichuk, O., Borneman, J., & Jiang, T. (2014). Phylogeny-based classification of microbial communities. Bioinformatics, 30(4), 449–456. https://doi.org/10.1093/bioinformatics/btt700
Thijs, S., De Beeck, M. O., Beckers, B., Truyens, S., Stevens, V., Van Hamme, J. D., Weyens, N., & Vangronsveld, J. (2017). Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Frontiers in Microbiology, 8, 494. https://doi.org/10.3389/fmicb.2017.00494
Wang, M. L., Morris, J. B., Barkley, N. A., Dean, R. E., Jenkins, T. M., Pederson, G. A., Morris, J. B., Barkley, N. A., Dean, R. E., Jenkins, T. M., & Pederson, G. A. (2016). Evaluation of genetic diversity of the USDA Lablab purpureus germplasm collection using simple sequence repeat markers. Journal of Horticultural Science and Biotechnology, 82(4), 571–578. https://doi.org/10.1080/14620316.2007.11512275
Weyenberg, G., & Yoshida, R. (2015). Reconstructing the Phylogeny: Computational Methods. In Algebraic and Discrete Mathematical Methods for Modern Biology (pp. 293–319). Elsevier. https://doi.org/10.1016/B978-0-12-801213-0.00012-5
Wu, Z., Liu, Q., Li, Z., Cheng, W., Sun, J., Guo, Z., Li, Y., Zhou, J., Meng, D., Li, H., Lei, P., & Yin, H. (2018). Environmental factors shaping the diversity of bacterial communities that promote rice production. BMC Microbiology, 18(1), 1–11. https://doi.org/10.1186/s12866-018-1174-z
Zhang, Z., & Lijuan, Z. (2013). Molecular characterization of genetic diversity of underutilized crops: Buckwheat as an example. Acta Horticulturae, 979, 407–420. https://doi.org/10.17660/actahortic.2013.979.44
Published
2023-12-25
How to Cite
Kavishe, F. F., Kennedy, J., Chimwamurombe, P., & Uzabakiriho, J. D. (2023). Towards the Analysis of the Genetic Diversity of Dolichos Lablab (Lablab Purpureus (L.) Sweet) and Identification of Its Rhizosphere Bacteria in Namibia. European Journal of Science, Innovation and Technology, 3(6), 313-324. Retrieved from https://ejsit-journal.com/index.php/ejsit/article/view/339
Section
Articles