Ab-initio Study of the Structural, Mechanical and Dynamical Properties of Half-Heusler ZrCoY (Y=Sb, Bi) in GW Approximation

  • Lynet Allan
  • Winfred M. Mulwa
  • R.E Mapasha
  • Julius M. Mwabora
  • Robinson J. Musembi
Keywords: First Principles, GW Approximation, Mechanical, Electronic, and Lattice Dynamical Properties, Half-Heusler Alloys, ZrCoY (Y=Sb, Bi)


In this article, we present an ab-initio study of the structural, mechanical, and dynamical stability of ZrCoY (Y=Sb, Bi) using the pseudopotential method within the GW approximation and generalized gradient approximation (GGA). This study employs Density Functional Theory (DFT) to comprehensively investigate the structural, mechanical, electronic, and lattice dynamical properties of cubic Half-Heusler Alloys ZrCoY (Y = Sb, Bi). The structural parameters, namely the equilibrium lattice constant, elastic constant, and its derivative, are consistent with reported experimental and theoretical studies where available. Mechanical properties such as the anisotropy factor A, shear modulus G, bulk modulus B, Young's modulus E, and Poisson's ratio n are calculated using the Voigt-Reuss-Hill average approach based on elastic constants. The Debye temperature, as well as longitudinal and transversal velocities, are predicted from elastic constants at GGA-PBE and GW levels of theory. The study of elastic constants showed that the compounds are mechanically stable, and the phonon dispersion study showed that the materials are dynamically stable. The ductility and anisotropic nature of the compounds were also confirmed by the elastic constants and mechanical properties. This study contributes valuable insights into the potential applications and performance characteristics of ZrCoY (Y=Sb, Bi) Half-Heusler alloys in the field of materials science.


Aliev, F. (1991). Gap at Fermi level in some new d-and f-electron intermetallic compounds. Physica B: Condensed Matter, 171(1–4), 199–205. https://www.sciencedirect.com/science/article/pii/092145269190516H
Born, M. (1939). Thermodynamics of crystals and melting. The Journal of Chemical Physics, 7(8), 591–603. https://aip.scitation.org/doi/abs/10.1063/1.1750497
Chauhan, N. S., Bathula, S., Vishwakarma, A., Bhardwaj, R., Johari, K. K., Gahtori, B., & Dhar, A. (2019). Enhanced thermoelectric performance in p-type ZrCoSb based half-Heusler alloys employing nanostructuring and compositional modulation. Journal of Materiomics, 5(1), 94–102. https://www.sciencedirect.com/science/article/pii/S2352847818300972
Evers, C. B., Richter, C. G., Hartjes, K., & Jeitschko, W. (1997). Ternary transition metal antimonides and bismuthides with MgAgAs-type and filled NiAs-type structure. Journal of Alloys and Compounds, 252(1–2), 93–97. https://www.sciencedirect.com/science/article/pii/S0925838896026163
Joshi, H., Rai, D. P., Hnamte, L., Laref, A., & Thapa, R. K. (2019). A theoretical analysis of elastic and optical properties of half Heusler MCoSb (M= Ti, Zr and Hf). Heliyon, 5(3).
Legrain, F., Carrete, J., van Roekeghem, A., Madsen, G. K., & Mingo, N. (2018). Materials screening for the discovery of new half-Heuslers: Machine learning versus ab initio methods. The Journal of Physical Chemistry B, 122(2), 625–632. https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.7b05296
Niu, M., Xu, W., Shao, X., & Cheng, D. (2011). Enhanced photoelectrochemical performance of rutile TiO2 by Sb-N donor-acceptor coincorporation from first principles calculations. Applied Physics Letters, 99(20), 203111. https://doi.org/10.1088
Sakurada, S., & Shutoh, N. (2005). Effect of Ti substitution on the thermoelectric properties of (Zr, Hf) NiSn half-Heusler compounds. Applied Physics Letters, 86(8), 082105. https://aip.scitation.org/doi/abs/10.1063/1.1868063
Schierning, G., Chavez, R., Schmechel, R., Balke, B., Rogl, G., & Rogl, P. (2015). Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: A review of selected materials and basic considerations of module design. Translational Materials Research, 2(2), 025001. https://iopscience.iop.org/article/10.1088/2053-1613/2/2/025001/meta
Sekimoto, T., Kurosaki, K., Muta, H., & Yamanaka, S. (2006). Thermoelectric and thermophysical properties of TiCoSb-ZrCoSb-HfCoSb pseudo ternary system prepared by spark plasma sintering. Materials Transactions, 47(6), 1445–1448. https://www.jstage.jst.go.jp/article/matertrans/47/6/47_6_1445/_article/-char/ja/
Strehlow, W., & Cook, E. L. (1973). Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. Journal of Physical and Chemical Reference Data, 2(1), 163–200. https://aip.scitation.org/doi/abs/10.1063/1.3253115
Uher, C., Yang, J., Hu, S., Morelli, D. T., & Meisner, G. P. (1999). Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B, 59(13), 8615–8621. https://doi.org/10.1103/PhysRevB.59.8615
Wei, J., & Wang, G. (2017). Properties of half-Heusler compounds TaIrGe by using first-principles calculations. Applied Physics A, 123(5), 1–6. https://link.springer.com/article/10.1007/s00339-017-0990-6
Wei, J., & Wang, G. (2018). Thermoelectric and optical properties of half-Heusler compound TaCoSn: A first-principle study. Journal of Alloys and Compounds, 757, 118–123. https://www.sciencedirect.com/science/article/pii/S0925838818317158
Xiao, H., Hu, T., Liu, W., Zhu, Y., Li, P., Mu, G., Su, J., Li, K., & Mao, Z. (2018). Superconductivity in the half-Heusler compound TbPdBi. Physical Review B, 97(22), 224511. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.224511
Yu, B., Zebarjadi, M., Wang, H., Lukas, K., Wang, H., Wang, D., Opeil, C., Dresselhaus, M., Chen, G., & Ren, Z. (2012). Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Letters, 12(4), 2077–2082. https://pubs.acs.org/doi/abs/10.1021/nl3003045
Zeeshan, M., Singh, H. K., van den Brink, J., & Kandpal, H. C. (2017). Ab initio design of new cobalt-based half-Heusler materials for thermoelectric applications. Physical Review Materials, 1(7), 075407. https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.1.075407
Zhu, T., Fu, C., Xie, H., Liu, Y., & Zhao, X. (2015). High efficiency half-Heusler thermoelectric materials for energy harvesting. Advanced Energy Materials, 5(19), 1500588. https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201500588
How to Cite
Allan, L., Mulwa, W. M., Mapasha, R., Mwabora, J. M., & Musembi, R. J. (2023). Ab-initio Study of the Structural, Mechanical and Dynamical Properties of Half-Heusler ZrCoY (Y=Sb, Bi) in GW Approximation. European Journal of Science, Innovation and Technology, 3(4), 440-451. Retrieved from https://ejsit-journal.com/index.php/ejsit/article/view/272