Grinding Problem of Center-Less Grinding Aluminum Tube in Polishing Process

  • Jyh-Woei Lin
Keywords: Aluminum, Finer-Grained Elastic Rubber Grinding Wheel (FGERGW), Center-Less Grinding Aluminum Tube (CLGAT), Feed Rate of Grinding Wheel (FROGW), Grinding Temperature


Aluminum was a hard and soft material and it was easy to generate grinding heat, so polishing was relatively difficult. The finer-grained elastic rubber grinding wheel (FGERGW) has been used to polish the center-less grinding aluminum tube (CLGAT) to reduce the grinding temperature. For the grinding problem of the CLGAT, an excellent polishing efficiency was achieved using the FGERGW and the feed rate of grinding wheel (FROGW) was not necessary to reduce. The effect of removing tool marks was excellently reduced high grinding temperature.


Denkena, B., Reichstein, M., & Hahmann, D. (2007). Dressing of filigree fine-grained metal bonded grinding wheels. Production Engineering, 1, 239–243. doi: 10.1007/s11740-007-0035-7
Eskin, D. G., Katgerman, L., & Mooney, J. F. (2004). Contraction of aluminum alloys during and after solidification. Metallurgical and Materials Transactions A, 35, 1325–1335. doi: 10.1007/s11661-004-0307-1
Finkelstein, A. & Husnullin, D. (2018). Irreversible Thermal Expansion of Replicated Aluminum Foam. Acta Metallurgica Slovaca, 24(2), 156-162. doi: 10.12776/ams.v24i2.1066
Hashimoto, F. & Iwashita, H. (2020). The Effect of Grinding Wheel Contact Stiffness on Plunge Grinding Cycle. Inventions, 5(4), 62. doi: 10.3390/inventions5040062
Hashimoto, F., Gallego, I., Oliveira, J. F. G., Barrenetxea, D., Takahashi, M., Sakakibara, K., Stålfel, H. O., Staadt, G., & Ogawa, K. (2012). Advances in centerless grinding technology. CIRP Annals, Manufacturing Technology, 61(2), 747-770. doi:10.1016/j.cirp.2012.05.003
Nam, T. H., Requena, G., & Degischer, P. (2008). Thermal expansion behaviour of aluminum matrix composites with densely packed SiC particles. Composites Part A: Applied Science and Manufacturing, 39(5), 856-865. doi: 10.1016/j.compositesa.2008.01.011
Safarzadeh, H., Leonesio, M., Bianchi, G., & Monno, M. (2021). Roundness prediction in centreless grinding using physics-enhanced machine learning techniques. The International Journal of Advanced Manufacturing Technology, 112, 1051–1063. doi: 10.1007/s00170-020-06407-2
Talebi-Anaraki, A., Chougan, M., Loh-Mousavi., M., & Maeno, T. (2020). Hot Gas Forming of Aluminum Alloy Tubes Using Flame Heating. Journal of Manufacturing and Materials Processing, 4(2), 56. doi: 10.3390/jmmp4020056
Vu, N. P., Nguyen, Q. T., Tran, T. H., Le, H. K., Nguyen, A. T., Luu, A. T., Nguyen, V. T., & Le, X. H. (2019). Optimization of Grinding Parameters for Minimum Grinding Time When Grinding Tablet Punches by CBN Wheel on CNC Milling Machine. Applied Sciences, 9(5), 957. doi: 10.3390/app9050957
How to Cite
Lin, J.-W. (2023). Grinding Problem of Center-Less Grinding Aluminum Tube in Polishing Process. European Journal of Science, Innovation and Technology, 3(3), 219-222. Retrieved from