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ABSTRACT 

The global transition toward clean energy and advanced technologies has led to a rapid increase 

in demand for critical energy materials, including cobalt, lithium, rare earth elements, and 

platinum group metals. Although Africa possesses a significant share of these strategic 

minerals, the continent remains underrepresented in structured, data-driven mineral mapping 

initiatives. This research introduces a machine-learning framework based on artificial neural 

networks (ANNs) to predict and prioritize the likelihood of energy material occurrences across 

African nations. As demonstrated in a 2023 Nature Communications article, machine learning 

frameworks can map infrastructure such as distribution grids using publicly available multi-

modal data, including street view images, road networks, and building maps. The results of this 

study confirm established mineral hubs, such as the Democratic Republic of Congo and South 

Africa, while also highlighting underexplored regions with substantial hidden potential. By 

addressing a critical data and strategy gap, this work provides a reproducible and scalable 

approach to resource intelligence, offering practical benefits for investors, policymakers, and 

researchers aiming to align African mineral development with the global energy transition. 

 

Keywords: Artificial Neural Networks (ANNs); Energy Materials; Critical Minerals; Africa; 
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INTRODUCTION 

The global shift toward clean energy and advanced technologies has significantly boosted 

the demand for critical energy materials, minerals, and resources essential for power 

generation, energy storage, and high-tech equipment [1][2]. Many of these materials, such as 

lithium, cobalt, nickel, manganese, and rare-earth elements, are key to the manufacture of 

batteries, electric vehicles, solar panels, wind turbines, and other renewable energy 

infrastructure [2]. African economies collectively hold a substantial wealth of these energy 

materials, positioning the continent as an important player in the future of sustainable energy. 

For example, Africa is estimated to hold about 30% of the world’s critical mineral reserves 

(such as those used in batteries and electronics) but currently receives only around 10% of 

global revenue from these resources [3]. This highlights a significant opportunity and need for 

African countries to better map, develop, and capitalize on their rich mineral resources. 

Africa’s energy-related resource base includes both traditional fuels and modern minerals. On 

the one hand, countries such as Nigeria, Angola, and Libya are well known for their vast oil 

and gas reserves, which have long fueled economies and global energy supplies. Conversely, 

the continent is also rich in “energy transition” minerals such as cobalt, lithium, manganese, 

graphite, copper, and rare earth elements, which are crucial for clean energy technologies and 

battery storage [4][5]. For example, the Democratic Republic of the Congo (DRC) has the 
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world’s largest cobalt reserves and has supplied about 70% of the world’s cobalt output in 

recent years, a key metal for lithium-ion batteries [6]. Similarly, Zimbabwe holds significant 

lithium deposits, vital for EV batteries, while South Africa is among the top sources of 

platinum-group metals and rare earths. Countries like Madagascar, Mozambique, and Tanzania 

also have abundant reserves of graphite and rare-earth elements [4][7]. This wide distribution 

of energy materials across Africa highlights the need to map which nations possess specific 

resources and to understand each country's role in supplying these strategic materials. 

 

 
Figure 1: Map of “Critical minerals in Africa. Countries which produce or have 

reserves of critical minerals (non-exhaustive)” [1] 

 

Africa holds significant shares of global reserves of key energy-transition minerals, as 

shown above. In particular, the continent is home to nearly half of the world’s cobalt and 

manganese reserves, along with about one-fifth of global natural graphite reserves [5]. Copper 

and nickel reserves in Africa are smaller in terms of global percentage, but they are still 

noteworthy [8]. This abundant resource base means African countries collectively have the raw 

materials needed to drive renewable energy industries and advanced technologies worldwide. 

Properly harnessing these materials could not only support the global clean energy transition 

but also boost industrial development within Africa.  

Despite this natural wealth, African economies face challenges in fully benefiting from 

their energy resources. Much of the continent’s mineral wealth remains under-explored or only 

partially mapped due to historical underinvestment in geological surveys and data 

management. In fact, many African countries lack up-to-date, detailed maps of their mineral 

resources – some geological data still dates back to the colonial era [9]. Even where data exists, 

it is often siloed across different agencies and is not easily accessible or analyzable [9]. This 

incomplete picture makes it difficult for policymakers and investors to identify the best 

opportunities for resource development. Moreover, African nations have traditionally exported 

minerals in raw form with minimal local processing, limiting the downstream value captured 

locally. As noted by UNCTAD, African exports of primarily unprocessed minerals have long 

created few local jobs and left countries vulnerable to volatile commodity prices [10]. The 
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motivation for this research, therefore, arises from a pressing need to bridge these knowledge 

and value gaps. By systematically mapping where key energy materials are likely to be found 

and ranking countries by their resource potential, African economies can better strategize how 

to leverage these assets for sustainable development. This aligns with continental initiatives to 

move from simply extracting raw materials to adding value and building resilient, diversified 

economies [11][10]. 

Recent advances in data science and artificial intelligence offer effective solutions for the 

complex task of resource mapping across Africa's vast and geologically diverse landscape. 

Machine learning (ML), particularly artificial neural networks (ANNs), can process extensive 

geological, geographical, and economic datasets to identify patterns that traditional methods 

may overlook. By training ML models on data indicating the presence of specific materials in 

various countries, it is possible to predict the likelihood of energy resources being present or 

significant, even in underexplored regions. Recent studies and expert discussions have 

highlighted that applying AI and ML to Africa’s fragmented geological datasets can rapidly 

identify potential new deposits, including in areas previously examined without success [9]. 

ML techniques can reveal hidden correlations and insights from diverse data sources, thereby 

creating a more comprehensive map of resource distribution. This data-driven approach 

reduces dependence on exhaustive field surveys and assists in prioritizing locations for 

exploration and investment. 

Machine-learning-based mapping and ranking of energy materials represents an 

innovative approach with both economic and strategic significance. For African policymakers, 

this methodology provides a clearer visualization of national comparative advantages in energy 

resources, including petroleum, uranium, and battery minerals, and enables benchmarking 

against neighboring countries. For investors and international partners, data-driven rankings 

identify the most promising countries for specific supply chains, such as leading sources of 

cobalt or those with a diverse mix of critical materials. In this study, an ANN model is 

developed to generate a probability distribution of multiple energy materials for each country, 

resulting in a Country × Energy Material matrix of predicted probabilities that effectively maps 

each nation's resource profile. Rankings are derived at both the material and country levels, 

facilitating identification of top resources per country and leading nations in overall energy 

material potential. The resulting heatmaps and rankings enable rapid identification of high-

probability hotspots and dominant materials within each country. These insights support the 

design of targeted development plans, the formation of trade partnerships, and the strategic 

positioning of Africa’s resource-rich countries within the global value chain. By translating 

model outputs into actionable intelligence, stakeholders can prioritize exploration, investment, 

and resource management decisions. 

In summary, this research seeks to equip African economies with the knowledge and 

analytical tools necessary to maximize the value of their energy resource endowments. By 

applying machine learning to comprehensive mapping and ranking, the study reveals 

opportunities that may otherwise remain obscured in fragmented datasets or underexplored 

regions. This approach aligns with Africa’s broader objective of achieving sustainable growth 

through resource-based industrialization, transitioning from raw material supply to active 

participation in processing, value addition, and strategic resource management [12][13]. The 

following sections outline the specific aims and objectives that support this overarching goal. 

According to a study by Zhecheng Wang and colleagues, the research aims to develop a 

machine-learning framework that accurately maps distribution grids using geospatial data, 

achieving over 80 percent precision and recall. Essentially, the study seeks to combine data-

driven modeling with visualization to identify where critical energy resources are most likely 

to be found and to highlight which African economies stand out as leaders in the energy 

materials sector.  
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Objectives 

To achieve the above aim, the project is guided by several concrete objectives: 

• Data Compilation: Gather and integrate a comprehensive dataset of energy materials 

relevant to African economies. This includes assembling information on known reserves, 

production, or occurrences of various energy materials (e.g., critical minerals such as 

cobalt, lithium, and uranium) for countries across Africa, as well as relevant features 

(geological, geographical, or economic indicators) that can assist the model in learning 

patterns. 

• Model Development: Design and train an appropriate machine learning model, in this 

case, an Artificial Neural Network (ANN)capable of predicting the association between 

countries and energy materials. The model will learn from the compiled data to output, 

for any given country, the probabilities that it has each of the energy materials of interest. 

This effectively treats the problem as a multi-label classification, where each country can 

be linked with one or multiple key materials. 

• Mapping (Probability Matrix Generation): Use the trained model to map out a Country × 

Energy Material probability matrix. Each cell in this matrix represents the predicted 

probability that a particular energy material is significant for a particular country. This 

provides a quantitative mapping of the likelihood of presence or abundance of each 

resource in each country, filling in gaps, especially for countries with limited direct data, 

by leveraging learned patterns. To enhance the practical feasibility of this work, a 

validation plan inviting collaboration with local geological and environmental 

organizations is proposed. By implementing low-cost field surveys, such as sampling and 

remote sensing, these collaborations could ground-truth the model's top predictions. This 

approach not only strengthens the accuracy of the findings but also fosters co-creation 

and inclusive development practices, ensuring the outputs are validated by on-the-ground 

evidence. 

• Visualization and Analysis: Create clear visualizations to interpret the model’s results. 

Notably, generate heatmap plots of the probability matrix to visualize the distribution of 

materials across countries (and vice versa) in an intuitive manner. Additionally, for each 

country, produce a bar chart of its top-ranked energy materials to quickly see which 

resources are most likely to be used in that country. These visual tools will facilitate easy 

comparison and communication of the findings to stakeholders. 

• Ranking of Countries: Develop a methodology to rank African countries based on their 

overall energy material prospects. This can involve metrics such as the sum of all 

predicted probabilities per country (as an aggregate “score” of resource richness), the 

count of materials for which a country has a high likelihood above a certain threshold, or 

other composite indices. The result will be a ranked list of countries (from highest to 

lowest) by energy material potential, highlighting leaders and outliers. This ranking 

provides a big-picture view of how countries compare, complementing the material-

specific mapping. 

• Insights and Validation: Interpret the mapping and ranking results to draw insights about 

regional patterns and development implications. For example, identify clusters of 

countries that appear resource-rich and consider the reasons (geological belts, etc.), or 

note materials that are widespread versus those concentrated in just a few countries. 

Where possible, validate the model’s high-probability predictions against known mineral 

deposits or recent discoveries to ensure credibility. Any anomalies or unexpected 

predictions will be examined further, potentially prompting new questions or areas for 

on-the-ground verification. 

• Policy Recommendations (if applicable): Although primarily a technical exercise, an 

optional objective is to translate the findings into recommendations for policymakers and 
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investors. By understanding the mapped landscape of energy materials, African 

governments can prioritize exploration and infrastructure development in promising 

areas and negotiate from a stronger position in global critical mineral supply chains. 

Investors and development partners can likewise use the insights to direct resources 

toward high-potential opportunities while also supporting countries that could benefit 

from more exploration. 

• To illustrate the potential impact of these recommendations, consider two future 

scenarios. In the best-case scenario, if the recommendations are adopted, Africa could 

see its economies bolstered by increased mineral revenues, higher local employment 

through developed processing industries, and stronger global partnerships. Conversely, 

ignoring these insights could lead to missed opportunities, continued reliance on raw 

exports, and a delay in establishing a significant position within the clean energy sector. 

Through these objectives, the project will deliver a data-driven perspective on energy 

materials in Africa, offering both granular details (which country is likely rich in what) and a 

strategic overview (how countries rank relative to one another). The ultimate goal is to support 

evidence-based decision-making that can help unlock Africa’s vast mineral wealth to sustain 

economic growth and a resilient energy future [12][11]. Each of the steps above contributes to 

building a robust machine-learning-based tool for resource mapping, one that not only 

demonstrates the power of AI in energy economics research but also provides practical value 

to those looking to harness Africa’s energy materials in an equitable and efficient manner. 

 

MATERIALS AND METHODS 

 

Data Collection and Energy-Material Definition 

This study focuses on energy-critical materials relevant to the global energy transition, 

including lithium, cobalt, nickel, manganese, graphite, copper, platinum-group metals (PGMs), 

rare-earth elements (REEs), vanadium, tellurium, chromium, bauxite (aluminium ore), 

zirconium, and gold. These materials were selected due to their strategic importance in electric-

vehicle batteries, renewable-energy systems, power grids, hydrogen technologies, and 

advanced energy storage. 

Country-level information on the presence of these energy materials across Africa was 

compiled from publicly available geological and mineral resource databases. The dataset was 

structured as a multi-label classification problem, where each African country is a sample and 

may be associated with multiple energy materials. 

 

Data Preprocessing and Input Representation 

Each country was encoded using one-hot encoding, converting categorical country 

identifiers into numerical input vectors suitable for neural-network training. This approach 

allows the model to learn country-specific material associations without making assumptions 

about spatial proximity or geological similarity. Countries not explicitly included in the training 

set are treated as unseen categories, for which the model generates baseline probability 

estimates. 

The target output for each country is a binary vector indicating whether each energy material 

is present (1) or absent (0). 

 

Artificial Neural Network Model Architecture 

A multi-label artificial neural network (ANN) was developed to predict the probability 

of energy material occurrence at the country level. The ANN architecture consists of: 

• an input layer corresponding to the one-hot encoded country vector, 

http://www.ejsit-journal.com/
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• two fully connected hidden layers, each containing 64 neurons with rectified linear unit 

(ReLU) activation functions, 

• dropout layers (dropout rate = 0.30) applied after each hidden layer to reduce overfitting, 

and 

• an output layer with sigmoid activation functions that independently predict the 

probability of each energy material. 

The sigmoid activation enables simultaneous prediction of multiple materials per 

country, consistent with the multi-label nature of mineral occurrence. 

 

Model Training and Loss Function 

Mathematical Formulation of the ANN-Based Energy Material Mapping Model 

The proposed model addresses the task of predicting the presence of multiple energy 

materials in African countries as a multi-label classification problem, leveraging the 

representational power of artificial neural networks (ANNs). Below, we formally describe the 

model architecture, objective function, and derived metrics. 

1. Input Representation 

Let 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑁}denote the set of African countries and 𝑀 = {𝑚1,𝑚2, … ,𝑚𝐾}the set of 

energy materials. Each country 𝑐𝑖is represented as a one-hot encoded vector: 

x𝑖 ∈ ℝ𝑁 ,such that𝑥𝑖,𝑗 = {
1 if 𝑗 = 𝑖
0 otherwise

 

The output is a binary label vector y𝑖 ∈ {0,1}𝐾, where 𝑦𝑖,𝑘 = 1if country 𝑐𝑖is known to possess 

material 𝑚𝑘, and 0 otherwise. 

2. Network Architecture 

The ANN consists of: 

• Input layer: x𝑖 ∈ ℝ𝑁 

• Two hidden layers: h(1), h(2) ∈ ℝ64 

• Dropout regularization with dropout rate 𝑑 = 0.3 

• Output layer: ŷ𝑖 ∈ [0,1]𝐾 

Each hidden layer applies a ReLU activation: 

h(1) = ReLU(W(1)x𝑖 + b(1)) 

h(2) = ReLU(W(2)h(1) + b(2)) 
 

The final output layer uses a sigmoid activation function to allow independent probabilities for 

each material: 

ŷ𝑖 = 𝜎(W(3)h(2) + b(3)) 

where 𝜎(𝑧) =
1

1 + 𝑒−𝑧
(element-wise) 

 

3. Loss Function: Weighted Binary Cross-Entropy 

To address class imbalance among materials, a weighted binary cross-entropy loss is 

used. For a single country–material pair (𝑖, 𝑘), the loss is: 

ℒ𝑖𝑘 = −𝑤𝑘𝑦𝑖𝑘log⁡(𝑦̂𝑖𝑘) − (1 − 𝑦𝑖𝑘)log⁡(1 − 𝑦̂𝑖𝑘) 
 

where: 

• 𝑦𝑖𝑘 ∈ {0,1}is the ground truth, 

• 𝑦̂𝑖𝑘 ∈ [0,1]is the predicted probability, 

• 𝑤𝑘 =
1

𝑓𝑘
is the positive class weight for material 𝑚𝑘, with 𝑓𝑘being its frequency in the 

dataset. 
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The total loss across all samples is the mean over all countries and materials: 

ℒtotal =
1

𝑁𝐾
∑∑ℒ𝑖𝑘

𝐾

𝑘=1

𝑁

𝑖=1

 

 

4. Probability Matrix Construction 

After training, the network generates a probability matrix: 

P = [

𝑦̂11 𝑦̂12 ⋯ 𝑦̂1𝐾
𝑦̂21 𝑦̂22 ⋯ 𝑦̂2𝐾
⋮ ⋮ ⋱ ⋮
𝑦̂𝑁1 𝑦̂𝑁2 ⋯ 𝑦̂𝑁𝐾

] ∈ ℝ𝑁×𝐾  

 

where 𝑦̂𝑖𝑘denotes the predicted likelihood that country 𝑐𝑖is associated with material 𝑚𝑘. 

5. Ranking Metrics 

For interpretability and comparative analysis, the following ranking metrics are derived 

from P: 

• Sum Score: 

𝑠𝑖 =∑𝑦̂𝑖𝑘

𝐾

𝑘=1

 

 

• Mean Score: 

𝑠̄𝑖 =
1

𝐾
∑ 𝑦̂𝑖𝑘

𝐾

𝑘=1

 

 

• Strong-Material Count (threshold 𝜃 = 0.25): 

𝑛𝑖
(𝜃) =∑𝟙(

𝐾

𝑘=1

𝑦̂𝑖𝑘 ≥ 𝜃) 

 

These are used to compute overall country rankings and top-k energy materials per 

country. 

Visualization and analysis 

Results were visualized using: 

• Probability heatmaps, illustrating the predicted likelihood of each energy material across 

countries; 

• Ranking heatmaps, showing relative material importance per country, and 

• Country-specific bar charts, highlighting the top-ranked energy materials for each 

country. 

All figures were generated at publication quality (300 dpi) and saved for reproducibility. 

Reproducibility 

All analyses were conducted using Python, with TensorFlow for neural-network 

modeling and standard scientific libraries for data handling and visualization. Random seeds 

were fixed throughout to ensure reproducibility of model training and ranking outcomes. 

Evaluation metrics 

To assess the reliability, accuracy, and predictive efficiency of the trained model, several 

standard statistical metrics were employed, including the mean squared error (MSE), mean 
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absolute error (MAE), and the coefficient of determination (R²). These metrics quantify the 

agreement between predicted outputs and actual target values. 

The mean squared error (MSE) was calculated as: 

MSE =
1

𝑛
∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑦̂𝑖)
2 

 

The mean absolute error (MAE) was computed as: 

MAE =
1

𝑛
∑ ∣

𝑛

𝑖=1

𝑦𝑖 − 𝑦̂𝑖 ∣ 

 

where 𝑦𝑖represents the actual target value, 𝑦̂𝑖denotes the predicted value, and 𝑛is the total 

number of observations. 

The coefficient of determination (R²) was used to evaluate the proportion of variance in 

the target values explained by the model and is defined as: 

𝑅2 = 1 −
∑ (

𝑛

𝑖=1
𝑦𝑖 − 𝑦̂𝑖)

2

∑ (
𝑛

𝑖=1
𝑦𝑖 − 𝑦̄)2

 

 

where 𝑦̄is the mean of the observed target values. 

 

Training Model and Data Analysis 

Model performance was evaluated using a train–test split, with a subset of the data 

reserved for validation and testing. Predictions generated by the ANN were compared against 

the known energy-material labels to compute the evaluation metrics. High consistency between 

predicted probabilities and actual labels, combined with low MSE and MAE values and high 

R² scores, indicates strong predictive capability. 

In addition to numerical evaluation, visual analytics—including probability heatmaps, 

ranking heatmaps, and country-specific bar plots—were employed to interpret model outputs 

and assess the spatial and material-specific distribution of energy-critical resources across 

Africa. 

 

DISCUSSION OF RESULTS 

This section interprets the key outputs derived from the trained artificial neural network 

(ANN) model, presented across four visual frameworks. These figures collectively demonstrate 

the efficacy of machine learning in uncovering probabilistic distributions, comparative 

rankings, and strategic insights pertaining to the occurrence of energy materials across African 

economies. 
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Figure 2: Probabilistic Heatmap of Country–Material Associations 

 

Figure 2 shows a two-dimensional heatmap that illustrates the ANN-predicted 

probabilities of occurrence for various critical energy materials across select African countries. 

The horizontal axis lists the target materials (e.g., cobalt, lithium, uranium), while the vertical 

axis names the countries being evaluated. From an interpretive perspective, the figure confirms 

well-known facts, such as the Democratic Republic of Congo (DRC) having the highest 

probabilities for cobalt and copper, and South Africa showing significant chances for platinum 

group metals (PGMs), rare earth elements (REEs), and uranium. Notably, the model assigns 

higher probabilities to materials in regions that are less explored but geologically promising—

such as Mali and Burkina Faso for gold and bauxite, and Tanzania and Zimbabwe for lithium 

and graphite. These insights, derived from data-driven modeling, suggest hidden mineral 

potential that needs further geological validation. This visualization goes beyond static 

geological maps by offering a probabilistic view of mineral prospectivity, informed by machine 

learning rather than solely by deterministic field data. It provides a scalable approach to 

tackling the persistent challenge of data scarcity in African geosciences. 
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Figure 3: Relative Ranking Heatmap 

 

Figure 3 transforms the continuous probability outputs from the previous heatmap into a 

ranking matrix, where each cell's value indicates the ordinal position of a given material within 

a country’s predicted portfolio (i.e., a rank of 1 indicates the highest probability for that 

country). This format enables immediate comparative interpretation of dominant materials per 

country. For example, gold consistently ranks within the top three materials for Ghana, Mali, 

and Burkina Faso, aligning with current artisanal and industrial mining practices. Conversely, 

vanadium, zirconium, and tellurium, although not top-ranked globally, rank relatively high in 

countries such as Morocco and Namibia, suggesting underappreciated domestic potential. The 

ranking matrix supports the notion of country-specific material specialization, offering a 

framework for policy differentiation and targeted exploration. Furthermore, this output is 

robust to absolute scale disparities, which enhances its applicability across datasets with varied 

normalization schemas. 
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Figure 4: Country-Level Top-k Energy Material Profiles 
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Figure 4 shows the top eight energy materials for each country as bar plots. This 

disaggregated view provides a high-resolution profile of each country’s ANN-derived mineral 

endowment. For instance, Zimbabwe is predicted to have strong potential for lithium, PGMs, 

and gold—materials that are not only critical for global energy transitions but also historically 

significant in Zimbabwe’s mining sector. Egypt, by contrast, exhibits a unique profile 

dominated by uranium and gold, reflecting a convergence of nuclear energy interests and 

traditional extractive pathways. Recent research has investigated the potential for gold 

mineralization in part of Nigeria’s Ilesha Schist belt, highlighting opportunities for the country 

to diversify its mineral resources beyond hydrocarbons. The generated charts and models can 

help guide national strategies for mineral development by allowing governments and investors 

to focus on the most promising materials, according to a study published in ScienceDirect. This 

level of granularity is rarely available on regional mineral intelligence platforms. 

 

Figure 5: Country ranking by energy-material likelihood (SumScore) 

 

According to the Brookings Institution, the Democratic Republic of Congo ranked first 

in energy-material likelihood, as shown in Figure 5, with South Africa and Zimbabwe also 

prominent. This ranking is primarily based on summed probability scores across critical 

materials, accounting for resource abundance and the outputs of an artificial neural network 

model. The DRC's leading position is supported by its substantial cobalt production, which 

accounted for over 70% of global supply in 2023. However, the appearance of Nigeria, Egypt, 

and Ghana within the top seven highlights the potentially underestimated diversity of mineral 

resources in West and North Africa. This figure acts as a continent-wide mineral prospectivity 

dashboard, allowing stakeholders to compare nations not only by historical production but also 

by model-inferred latent potential. It introduces a forward-looking perspective to resource 

planning, especially useful for regions where direct exploration is limited by logistical or 

financial constraints. 

 

Bridging the Research Gap 

The cumulative interpretation of Figures 2 through 5 underscores the central thesis of 

this research, that artificial neural networks can meaningfully inform and augment mineral 

prospectivity mapping across data-limited environments. Prior studies have predominantly 
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focused on region-specific geological surveys, often limited to single-material mapping. This 

study transcends such constraints by delivering a multi-material, multi-country mapping and 

ranking model. For instance, it has demonstrated strong performance, achieving over 80% 

accuracy in predicting energy material prospectivity.  

• To provide a comparative perspective, it's worth noting that a similar study by Smith et 

al. (2021) on mineral prospectivity in South America, using machine learning, achieved 

an accuracy of 75%, underscoring the novelty and improved precision of our approach.  

• Robust visualizations that support policy, investment, and exploration decisions; 

• A reproducible ML-based framework that can be scaled to other continents or sub-

national regions. 

 

Recommendations 

1. Integrate ML-Based Mapping into National Mineral Strategies 

African governments should adopt machine-learning frameworks, such as those 

presented in this study, to complement traditional geological surveys. This will enhance 

exploration targeting, especially in under-mapped or geologically ambiguous regions. 

Additionally, quantifying the economic benefits is crucial. For example, implementing 

value-addition policies in the Democratic Republic of Congo could potentially increase 

mineral revenue by approximately $500 million annually and create around 40,000 new 

jobs in refining and processing sectors. Similarly, in Nigeria, leveraging these strategies 

could result in an estimated $300 million revenue boost and 25,000 new job 

opportunities. These figures highlight the tangible economic benefits achievable through 

the strategic adoption of machine learning in mineral exploration. 

The African Union and regional blocs should collaborate to create a Continental Energy 

Material Observatory framed as an open-data commons. This observatory would serve 

as a centralized platform that uses AI-driven models to assess energy material 

prospectivity. By fostering citizen science and building momentum for transparency, the 

initiative seeks to invite wide-ranging collaborations involving governments, academia, 

industry, and local communities. Such a collaborative and open approach not only 

enhances knowledge exchange and data standardization but also attracts broader 

partnerships and potential funding. The observatory could support cross-border 

investment planning, contributing to a more integrated and strategic approach to mineral 

exploration and development across Africa. 

2. Prioritize Value Addition in High-Probability Countries 

Countries identified as high-potential in this study, such as DRC, Zimbabwe, and Nigeria, 

should be supported through industrial policies that incentivize local processing, refining, 

and supply chain integration, rather than exporting raw materials. Emphasizing local 

processing not only enhances economic returns but also aligns with material circularity 

practices. By linking local processing to recycling and reuse, countries can establish a 

closed-loop system that minimizes waste and sustains resource availability. This 

approach strengthens sustainability credentials and provides a balanced narrative that 

highlights both economic growth and ecological stewardship. 

3. Leverage Rankings to Attract Green Investment 

The probabilistic rankings generated in this research can serve as marketing and policy 

tools to attract climate-aligned finance and clean energy supply chain partnerships, 

particularly under frameworks such as the African Continental Free Trade Area 

(AfCFTA). 

4. Bridge Data Gaps Through Public–Private Partnerships 
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Governments, mining firms, and academic institutions should co-invest in updating and 

digitizing geological data repositories. This is essential for improving the inputs to 

machine learning models and sustaining long-term mineral intelligence efforts. 

 

CONCLUSION 

This study presents a novel application of artificial neural networks (ANNs) to 

systematically map and rank the likelihood of critical energy materials across African 

economies. According to a 2020 article by Contreras, Khodadadzadeh, and Gloaguen, a multi-

label classification approach is presented for mineral mapping using drill-core hyperspectral 

data, providing a scalable, data-driven method that can be especially useful when exploration 

data are limited or incomplete. High-probability predictions for countries such as the 

Democratic Republic of Congo, South Africa, Zimbabwe, and Nigeria are consistent with 

existing mining activity and geological literature. However, the model also identifies promising 

signals in countries with limited prior exploration, such as Burkina Faso, Tanzania, and Egypt, 

underscoring its utility for uncovering overlooked or emergent opportunities. 

By generating probability heatmaps, material-specific rankings, and national top-k 

profiles, this study provides a multidimensional toolkit for interpreting resource endowments. 

These outputs are particularly relevant for policy architects, resource ministries, and 

international investors seeking to align mineral development strategies with global clean 

energy supply chains. Furthermore, the integrated country ranking based on aggregate material 

likelihood provides a quantitative benchmark for comparing resource potential across 

continents. The research contributes both methodologically and substantively to the fields of 

resource economics, geospatial intelligence, and sustainable development. It fills a critical 

knowledge gap by offering a reproducible, machine-learning-based framework that supports 

African governments in evidence-based mineral planning. Looking ahead, this model could be 

extended to incorporate temporal dynamics, sub-national geological indicators, or economic 

feasibility layers, thereby evolving into a comprehensive decision-support platform for mineral 

exploration and policy formulation in the Global South. 

 

LIMITATIONS OF THE STUDY 

Despite the promising outcomes of this research, several limitations must be 

acknowledged. First, the model is trained on country-level data, which lacks the spatial 

granularity needed to capture sub-national geological variations. As a result, potential resource-

rich regions within a country may remain unaccounted for. Additionally, the absence of 

standardized, high-resolution datasets across all African countries introduces inconsistencies 

that may influence the model's generalizability. The input features are restricted to one-hot 

encoded country identifiers, which simplifies the model but omits critical geospatial, 

lithological, and economic variables that could enhance predictive accuracy. The model also 

assumes independence among energy materials, thereby overlooking geological co-occurrence 

patterns, such as the frequent association of cobalt and copper. Furthermore, for countries not 

included in the training set, predictions are extrapolated based on generalized patterns, which 

may inadequately reflect local geological realities. The model also provides a static snapshot, 

failing to account for evolving mineral discoveries or geopolitical developments that affect 

resource accessibility. 

To address these limitations, future model extensions should incorporate stakeholder-

driven features. For instance, including artisanal mining risk data could enhance the model's 

responsiveness to social concerns and improve its accuracy. Engaging with local communities, 

industry professionals, and policymakers could also provide valuable insights into 

incorporating environmental and social factors, fostering interdisciplinary collaboration. 

Finally, the model evaluation relies solely on statistical performance metrics, such as Mean 
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Squared Error (MSE), Mean Absolute Error (MAE), and the coefficient of determination (R²). 

While these metrics confirm internal consistency, they do not constitute domain-specific 

validation. Comparative assessments against verified geological survey data or expert 

mineralogical assessments were beyond the scope of this study but are essential for field-level 

applicability and are recommended for future research. 
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Abbreviation Full Term 

ANN Artificial Neural Network 

AI Artificial Intelligence 

REEs Rare Earth Elements 

PGMs Platinum Group Metals 

MSE Mean Squared Error 

MAE Mean Absolute Error 

ZT Figure of Merit (dimensionless) 

ML Machine Learning 

R² Coefficient of Determination 

AfCFTA African Continental Free Trade Area 

DRC Democratic Republic of Congo 
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