European Journal of Science, Innovation and Technology

DRI 1SSN: 2786-4936

www.ejsit-journal.com

Volume 6 | Number 1 | 2026

Architectural Patterns for Integrating Large Language Models (LLMs)
into Node.js Server Applications

Oleksandr Tserkovnyi
TrialBase Inc., Principal Engineer
Dominican Republic, Punta Cana

ABSTRACT

This article examines the evolution and systematization of architectural patterns for integrating
large language models (LLMs) into server applications built on the Node.js platform, against
the backdrop of the rapid diffusion of generative technologies in industrial software
development and the expanding market for Retrieval-Augmented Generation (RAG) solutions.
The relevance stems from the fact that by 2025, LLMs will have become an indispensable
component of digital products, while server architectures must embed computational speech
into existing infrastructures under constraints of token budgets, call costs, and network latency.
The objective is to identify and analytically describe stable architectural patterns that enable
efficient, predictable LLM integration in Node.js backends. Methodologically, the work
combines systemic architectural analysis, modeling of interactions with LLM APIs, and
content analysis of industrial practices, enabling the author to construct an engineering-
economic efficiency model for each configuration. The article’s novelty lies in formulating the
concept of a balanced LLM-integration architecture in which throughput, token price, and
service-layer observability are treated as interdependent architectural variables. An
evolutionary pathway is proposed for transitioning from monolithic model calls to
microservice and serverless patterns, informed by market growth dynamics and the scaling of
compute resources. The article will benefit researchers and engineers engaged in server-
application architectural design, cloud-service developers, and Al-engineering specialists
aiming for resilient and cost-balanced deployment of LLM technologies in production
environments.

Keywords: large language models, Node.js, architectural patterns, microservices, serverless
computing

INTRODUCTION

By 2025, large language models will have effectively become standard in industrial
development. According to the annual Stack Overflow survey, over 80% of practicing
developers have already used the OpenAl GPT family in work projects, with this share nearly
doubling over the past two years (Stack Overflow, 2025). Such high penetration gives rise to a
new engineering expectation: the server must be able to converse, which means that any
modern Node.js backend inevitably faces the task of embedding LLM functionality as naturally
as databases or message queues once did.

The reason is not mere trend-following; it is product economics. The market for retrieval-
augmented generation (RAG) systems is already estimated to be nearly $2 billion, and
according to Mordor Intelligence, it is growing at a compound annual rate exceeding 39%
through 2030 (Mordor Intelligence, 2025). For businesses, this implies that the costs of
implementing an LLM layer are increasingly recouped not by quarter’s end but by sprint
completion: models reduce support time, improve support conversion, and create new paid
knowledge-synthesis services. Consequently, for backend developers, early design of

—

https://ejsit-journal.com/index.php/ejsit
http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

architectural extension points that can accept external LLM APIs or local weights without
requiring capital refactoring is advantageous.

In practice, needs crystallize into three task families. First, conversational interfaces,
where an LLM generates replies or the user acts, are typically implemented in the Node.js
ecosystem via streaming SSE to deliver text with negligible perceived delay. Second, final-
document generation, reports, conversation summaries, and automated instructions, where
asynchronous execution via a job queue is favored to avoid blocking HTTP traffic. Third, RAG
services, which combine vector search with the model and expose an API for answers, are
rapidly becoming a mandatory component of enterprise knowledge, as corroborated by the
aforementioned market dynamics.

Architecture, however, encounters the physical limits of LLM APIs. First, token limits:
even the mini version of GPT-4o supports a 128,000-token context window, which is appealing
for documents yet requires strict input text normalization, or costs scale nonlinearly (OpenAl,
2024). Second, cost: the same GPT-40 mini is roughly sixty cents per million input tokens and
two dollars forty cents per million output tokens. Hence, each superfluous uncached call
translates directly into an invoice (OpenAl, 2025a). Finally, latency: even in an optimized
stack, OpenAl states that GPT-4.1 mini halves latency relative to GPT-4o, yet the timescale
remains seconds rather than milliseconds, compelling front-end designs that support
progressive output delivery and timeouts for long contexts (OpenAl, 2025b). Thus, competent
LLM integration in Node.js is a balance between linguistic power and engineering restraint,
attainable only by accounting for real-world figures of tokens, dollars, and milliseconds.

MATERIALS AND METHODOLOGY

Research Methodology

The study of architectural patterns for integrating LLMs into Node.js server applications
relies on a systematic analysis of contemporary engineering and economic sources, including
model vendor documentation, industry reports on market dynamics, cloud provider practices,
and empirical observations from open repositories. Eight primary sources were analyzed,
spanning three thematic blocks: technological evolution of LLM APIs and their constraints
(OpenAl, 2024; OpenAl, 2025a; OpenAl, 2025b), practices of quota management and compute
scaling in clouds (Microsoft Learn, 2025), and trends in microservice architecture and
streaming generation (The Business Research Company, 2025; LangChain, 2024).

The theoretical foundation comprises studies on RAG market growth, demonstrating a
shift from experimental LLM integrations to robust product scenarios in which search and
generation are unified within a single server boundary (Polan, 2025). According to Mordor
Intelligence (2025), the RAG market is growing at an annual rate of over 39%, creating a
compelling objective to devise architectural templates that optimize latency and call costs. As
a practical framework, the work utilized OpenAl API performance and pricing metrics
(OpenAl, 2025a), including input/output token prices, context limits (128,000 tokens), average
generation latency, and worker load distribution. These parameters enabled the construction of
an engineering-economic model, wherein each architectural pattern is evaluated by composite
efficiency, which is the ratio of performance (throughput x latency) to operational expense
(token cost % invocation rate) (Aryan et al., 2023).

Methodologically, the study combines comparative architectural analysis, experimental
modeling of Node.js service interactions with LLM APIs, and content analysis of industrial
deployments. First, six baseline integration topologies were mapped: direct in-process model
call, proxy API, job queue with workers, retrieval-augmented generation (RAG) layer, action-
coordination (function-calling hub), and serverless edge deployment. For each topology,

—

about:blank

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

characteristics were recorded: mean response time, degree of process isolation, sensitivity to
traffic growth, and token volume per transaction.

The criteria for selecting and comparing patterns in this article are defined by strictly
measurable engineering and economic variables, as well as the requirement for a balance
between throughput and latency, token price, component isolation, and observability maturity.
The final suitability of the configurations is assessed through composite efficiency as the ratio
of throughput (throughput X latency) to operational costs (token cost % invocation rate).

The testing and performance recording parameters in this paper include average response
time, degree of process isolation, sensitivity to traffic growth, and token volume per
transaction, using OpenAl performance and pricing metrics (including a context limit of
128,000 tokens and generation latency) and cloud provider quota restrictions. The sample
limitations stem directly from the analysis's reliance on primary sources and public quota
policies, which do not provide detailed breakdowns by hardware configuration, Node.js
version, and network RTT.

Theoretical Definitions

Software architecture in contemporary theory is construed as the aggregate of a system’s
key structures, comprising elements, the relations among them, and the rules governing their
composition; decisive, however, is not the mere inventory of modules, but those design
decisions that constrain the space of subsequent change and thereby determine the
controllability of product evolution (Wan et al., 2023). In this sense, architecture functions
simultaneously as a descriptive model (what is connected and in what manner) and as a
normative frame (what may be altered without compromising integrity). At the same time,
architectural quality manifests as the system’s capacity to preserve specified properties under
increasing load, escalating scenario complexity, and shifting external dependencies. Such an
interpretation binds architecture to the practice of trade-off analysis: target quality attributes,
such as latency, throughput, reliability, security, and maintainability, are not added at the end,
but compete with one another at the level of structural decisions; consequently, architectural
choice is more appropriately understood as optimization under constraints rather than as a
search for a singular correct solution. For this reason, applied architectural engineering assigns
particular importance to the discipline of explicitly documenting decisions and their
consequences, including scenario-based analysis of quality attributes and the managed
evolution of architecture as a continuous process rather than a one-off design stage (Lytra et
al., 2019).

The key concepts required for a systematic description of architectural decisions are
architectural style and architectural pattern. An architectural style specifies a general mode of
component decomposition and interaction (e.g., service decomposition, event-driven
interaction, layered organisation), thereby defining typical boundaries and permissible
dependencies (Esparza-Peidro et al., 2024). A pattern, in turn, fixes a stable configuration of
structural decisions for a recurring problem, including characteristic trade-offs and conditions
of applicability (Farshidi et al., 2020). It is essential to distinguish a pattern from an
implementation technique: a pattern does not describe a specific library or protocol, but rather
a persistent structure (for example, offloading computationally intensive operations into an
asynchronous path) that can be realised by different means. Work on evolutionary architecture
emphasises that under high requirements volatility, architectural decisions must be verifiable
over time: mechanisms are needed that not only permit change, but also protect critical system
properties from imperceptible degradation, thereby transforming architecture from a static
blueprint into a managed system of constraints and feedback (Chondamrongkul & Sun, 2023).

Decomposition into autonomous services is typically described as an architectural style
in which independent deployment and contract-based interface alignment are used to scale

http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

development and reduce change risk; however, such independence is attained at the cost of
more complex distributed interactions, the emergence of network uncertainty, and the need for
strict observability (Azra, 2024). Academic surveys of microservices emphasize that gains in
modularity and localization of change are accompanied by increased requirements for
dependency management, resilience to partial failures, and request traceability across service
boundaries; therefore, such systems require architectural coordination mechanisms, including
operation idempotency, compensating actions, and explicit management of the state of long-
lived processes (SOylemez et al., 2022). Observability in this context should be understood not
as the presence of logs, but as the ability to reconstruct causal relationships among events,
latencies, and failures in a distributed system from operational data. Studies of industrial
practice in distributed tracing indicate that the very complexity of interpreting traces and
aligning observability tooling becomes one of the constraints on effective microservice
operations (Li et al., 2021).

Serverless computing constitutes a distinct deployment style in which the unit of
execution is a function, while the platform assumes scaling, scheduling, and a substantial
portion of operational responsibilities (Ghorbian & Ghobaei-Arani, 2025). In theory, this
reduces barriers to entry and improves economics under variable load, but introduces specific
constraints, most notably cold starts, upper bounds on execution time, and dependence on the
runtime environment. Research works emphasize that the serverless approach is rational where
it is beneficial to transfer resource management to the platform and pay for actual consumption;
however, for long-running operations and complex context preparation, an architectural
separation becomes necessary: heavy stages are moved into asynchronous paths, while
boundary functions are responsible for rapid request intake, response formation, and correct
enforcement of time limits (Toosi et al.,, 2024). Accordingly, serverlessness should be
interpreted not as a universal replacement for servers, but as a means of shifting the boundary
of responsibility, which necessitates rigorous design of the computation life cycle and explicit
control of failures and retries.

The integration of large language models into server systems can be succinctly described
through the concepts of computational dialogue, context, and constrained resource budgets.
Context refers to the totality of input data provided to the model to generate an answer
(Legashev et al., 2025). In practical operation, it is expressed in tokens and thus becomes a
measurable resource that competes with latency and execution cost (Han et al., 2024). A
consequential theoretical implication follows: the language-model layer within an architecture
should be treated as an external computational subsystem with its own quotas and price, rather
than as an ordinary library; therefore, architectural decisions must include control of context
volume, reuse of results, management of call parallelism, and observability of costs at the
transaction level. Retrieval-augmented generation is defined as a class of architectures in which
the generative response is formed not only from the model’s parameters, but also from retrieved
knowledge fragments drawn from an external corpus (Klesel & Wittmann, 2025). In the basic
scientific formulation, this is a combination of parametric memory and non-parametric memory
in the form of an indexable store, which enables knowledge updates without retraining and
links responses to sources, while simultaneously shifting part of the responsibility for result
quality onto retrieval quality and the discipline of index management. As a result, an
appropriate theoretical framework for such systems relies on architectural categories of
boundaries, contracts, quality attributes, and managed evolution: the language model becomes
one component whose behavior must be stabilized by engineering guardrails, while
reproducibility, observability, and cost become as primary characteristics of architecture as
latency and fault tolerance.

about:blank

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

RESULTS AND DISCUSSION

A sound LLM-service integration architecture begins with strictly measurable
parameters; otherwise, discussion of templates devolves into guesswork. Foremost are
throughput and latency (Dhaouadi et al., 2021). Even default access to GPT-4 on Azure yields
450,000 tokens per minute and 2,700 requests per minute, about 45 RPS at an average 100
tokens per request. These are default rate limits that Microsoft assigns to Azure subscriptions
based on model and region. Microsoft's public documentation doesn't provide breakdowns like
which GPU/CPU, which Node.js version, what RTT because these are service capacity
allocation policies, not client SDK measurements. Moving to an enterprise tier increases limits
by an order of magnitude but entails contractual procedures and delicate quota orchestration
(Microsoft Learn, 2025). Therefore, if long documents must be served, the architecture must
include streaming delivery and background job queues; for short chat sessions, a microservice
with an SSE stream suffices.

Costs are measured not in virtual cores but in tokens. Hence, an economical scheme
includes aggressive prompt-hash caching, elision of repeated history segments, and progressive
reliance on cached input. The financial model directly dictates the technical one: any solution
that fails to reduce total token flow is destined to fail the FinOps audit.

Isolating business logic from the Al core is no longer an architect’s luxury, but a market
necessity. The global microservices solutions market is expected to grow from USD 7.4 billion
in 2025 to USD 15.6 billion by 2029, at a 20.6% CAGR, as shown in Figure 1 (The Business
Research Company, 2025). According to the TBRC methodology, market assessments and
forecasts are formed based on gold-standard sources and comparison/verification of market
values through company financial indicators, statistical modeling (correlations, regressions,
extrapolation, etc.) and mandatory expert validation (including interviews). The forecast is
additionally adjusted taking into account macrofactors, including GDP, and qualitative
assumptions.

20

15

10

Market Size (USD Billion)

2025 2026 2027 2028 2029

Year

Figure 1. Global Microservices Solutions Market Forecast
(The Business Research Company, 2025)

http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

Such tempo is impossible without independent release cycles: the LLM layer changes
weekly, while domain services follow quarterly versions. A crisp boundary is not only the
ability to patch without stopping the monolith but also insurance against regressions: rolling
back one container is simpler than rebuilding an entire process.

Finally, verifiability and observability transform a diagram into a working product
(Waseem et al., 2021). Field statistics indicate that 39.8% of teams prefer offline evaluation of
model outputs, whereas only 32.5% use online metrics, real-time is harder to control than batch
logs, as shown in Figure 2 (LangChain, 2024).

Tracing /
observability

Guardrails

Offline evaluation

Control Type

Online evaluation

Other X

60

Adoption Rate (%)

Figure 2. Adoption of Control Mechanisms for AI Agents (LangChain, 2024)

Estimates from TechSci Research (2024) show similar forecasts: The Global
Microservices Architecture Market was valued at USD 5.67 billion in 2023 and is expected to
reach USD 14.85 billion by 2029.

Hence, the requirements include tracing every call, collecting token metrics, and
automatically performing A/B splits across model versions. Lacking these, the DevOps loop
chokes, and incidents disappear into a black box that must be probed manually.

Ultimately, pattern selection seeks balance among four vectors: mechanical throughput,
monetary token price, component isolation, and observability maturity. Ignoring any one
causes the others to drift beyond tolerable bounds, pushing the project off schedule.

Direct in-process API call. Integrating the model’s API within a single process is
tempting for its minimal coupling. A controller receives the request, formats it in a service,
and, without intermediate network hops, invokes the provider’s client library. There is no
serialization, no additional routing layers so that a feature can be implemented in just a few
lines. The server maintains a familiar directory structure; tests are mocked using standard
methods; deployment follows the same pipeline as the rest of the code.

The proximity has a flip side. Any model version update entails a full application release;
vendor dependency hardens, making provider switching or even pricing plan changes more
onerous than prototyping suggests. Load shares the same thread pool as web handlers.
Moreover, security criteria are intertwined with domain logic because access tokens and billing
counters are located within the process environment.

Nevertheless, this option is justified when the load is low and time-to-market is a primary
concern. In a corporate prototype or early-stage startup, repackaging into a microservice often
appears to be premature optimization; validating the hypothesis and estimating the per-request

about:blank

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

cost is more important. If traffic volume is measured in tens of calls per minute and the model
is only needed for brief outputs, the monolithic path remains the most rational.

Proxy service. Once external clients or multiple internal teams begin to consume the
server, tight coupling to the model impedes growth. Extracting Al-communication logic into a
dedicated edge layer turns it into an autonomous contract. This layer accepts external requests
in a frontend-friendly format, most often a text interface over a representation transfer protocol,
and immediately opens an output stream, allowing the user to view results as they are
generated. The edge service becomes the central point for token accounting, limit enforcement,
and prompt versioning; there is no need to rebuild other services, one container update suffices.

Deployment follows cloud-standard practice: build a container image, bake the
dependency base into a layer, and ship it to an orchestrator cluster. Being small, the service
initially requires a single replica; horizontal scaling can be achieved through an autoscaler. As
load rises, new instances surface automatically; process isolation prevents mutual interference
between text generation and core business functions.

The separate ingress also enables a strategic cache. Model responses, especially those
grounded in static system prompts, often repeat. Storing results in fast memory reduces token
spend and eliminates latency. Above the cache, a rate limiter protects against abuse that would
turn the service into a costly mining rig via request storms. These measures are introduced
locally without touching neighboring microservices: business teams release on their cadence,
while the AI team experiments with more efficient models without risking the broader
landscape.

Queue with background workers. Gradual load growth and expanding scenarios
necessitate separating instantaneous user calls from heavyweight operations on long
documents. In practice, this leads to an intermediate job queue, where the edge layer places a
task description. An asynchronous worker then consumes the message and calls the language
model. This three-segment craft, ingress, message broker, worker, avoids holding connections
open until an answer is ready and frees web threads for new clients. The larger the input, the
greater the gain: long generation or post-processing becomes background work; the user
receives a quick confirmation identifier and can later poll task status.

The message broker is pivotal. Choices include lightweight BullMQ, optimized for
Node.js simplicity; classic RabbitMQ with flexible routing; and distributed Kafka, designed
for end-to-end data streams. If the bet is thousands of parallel jobs and guaranteed delivery, a
broker with a disk log and acknowledgments prevails. If minimal latency and simple
deployment are the primary requirements, a memory-oriented solution built on top of a Redis
cluster is sufficient. Regardless of brand, resilience requires durable queues and worker-restart
policies in the event of abnormal termination.

As the project grows, workers scale horizontally. Rather than rebuilding images, simply
bring up additional instances with the same code; the broker distributes messages. Note,
however, that concurrent worker and generation-intensity increases sharply raise token
expenses, so autoscaling must consider price metrics, not just CPU load. Rotation also touches
model updates: roll out a new prompt or parameters to a fraction of workers to observe answer
quality before a complete switchover, with the option to roll back changes without impacting
other services.

RAG layer. When the application must answer questions grounded in private knowledge
corpora, queues alone are insufficient. A retrieval-augmented layer emerges, in which the input
text is first embedded, the nearest items are retrieved from a vector store, and the retrieved
context is then fed to the model. The pipeline, encompassing ingest, indexing, retrieval, and
generation, is designed to allow each stage to evolve independently. From a Node.js standpoint,
a thin adapter over a generic dense-vector client suffices. Storage options include cloud-hosted

http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

Chroma, fully managed Weaviate, or scalable Pinecone; the balance between storage cost and
reverse-search speed primarily dictates the choice.

The index lifecycle, unlike a classic database, requires special care. As source documents
update, old embeddings lose relevance; therefore, incremental refresh and versioning are
necessary to maintain reproducibility of the generation. A common tactic is to maintain two
indices: the active one serves queries while a reserve is rebuilt on new data, followed by an
atomic role swap. This eliminates inconsistency windows and enables quality control by
comparing model answers on old vs. fresh knowledge before production rollout.

Action coordination (function-calling hub). Shifting from passive generation to scenarios
where the model orchestrates external actions requires a coordinator that binds language-engine
intent to specific internal or third-party services. The coordinator accepts the model’s response
as a strictly defined JSON object, in which each function is declared by a signature, namely,
its name, arguments, and expected result. Developers define these signatures once; thereafter,
the Node.js node automatically matches the model-provided structure to implementations and
invokes the required method. Eliminating manual parsing reduces transformation errors and
accelerates the addition of new actions, as a new service requires only a declarative entry.

Complexity increases when the model requires multiple calls within a single session. The
coordinator must persist intermediate states, check idempotency, and, where necessary, fold
the chain into an atomic transaction. For example, if one must create an invoice and then
confirm payment, the two steps form a logical pair: the failure of the second step must
compensate for the first. The node implements this via an action log and compensation
mechanisms akin to the saga pattern; even if the process crashes, the sequence can be recovered
and completed correctly.

Practical value emerges in integrations. CRM interaction becomes a natural dialogue: the
model requests card creation, the coordinator executes it, the new record is returned, and the
model’s next move composes a user notification. Payment is analogous: the model initiates an
operation, receives a transaction ID, and either confirms the charge or reports failure. The user
experiences a seamless conversation, unaware of numerous hidden network exchanges.

Serverless edge. When serving a global audience, network transit to a central data center
can exceed the time required for text generation. At this point, a serverless approach, where the
model-calling function is deployed as close to the client as possible, is preferable. Amazon
Lambda, Vercel Edge Functions, and Cloudflare Workers run code at distributed network
nodes, charging strictly for actual resource usage. This scheme immediately addresses
geographic distance but introduces constraints: cold starts increase first-request latency, and
maximum runtime is capped.

To minimize cold-start impact, functions are kept warm by small synthetic event trickles
or by lazily loading dependencies after the first output tokens, creating the illusion of
immediate response. For long messages, streaming results to the client stretches generation
time without blocking the interface. Runtime limits are mitigated by process partitioning: heavy
context construction executes in a background queue, while the serverless function formats the
reply from prepared data.

Proximity to the edge enables a cache shared by instances within a region. Storing
request-response pairs in a distributed key store reduces token costs and variance in answers
on repeated queries (Gilbert & Lynch, 2002). Since the key derives from a normalized-prompt
hash, even slightly different requests can resolve to a shared result after canonicalization. The
developer selects an expiration strategy and an affordable memory budget; the platform scales
the rest. This triad, edge function, cache, and queue, serves a global audience at near-network
latency without sacrificing generative richness. The above patterns are systematized in
Figure 3.

about:blank

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

Asynchronous worker
for long tasks

Search Layer

Augmented generation

for knowledge ?}

/

Reduce token costs,

latency
Serverless

Microservice
Deployment

Architecture
Deploy close to the client

50 Z@j 3@8

Monolithic Al Edge Service Scalable Al
Integration Independent contract Integration
Slow, rigid, for Al Fast, flexible,

insecure model secure model

Figure 3. Scaling AI Model Integration (compiled by the author based on his own
recommendations)

In applied practice, recommendations for integration cannot be rigidly tied to the Node.js
+ OpenAl pair, because competing providers and model delivery channels impose different
constraints on protocols, inference parameters, observability, and risk management. For
example, Anthropic’s messaging interface explicitly provides a streaming mode via SSE, and
stream implementations are available in standard toolkits for multiple languages, making it
possible to reproduce the same user-facing properties (low perceived latency, incremental text
output) outside the Node.js ecosystem as well (Claude Docs, n.d.). In addition, a variant occurs
in which the model provider is not addressed directly; instead, the same model is consumed
through a cloud marketplace of managed models: thus, Claude is available through Amazon
Bedrock with formalized inference parameters, which changes the architectural framing of the
task (Amazon Bedrock, n.d.). A unified point of quota enforcement, logging, and access control
emerges at the level of the cloud platform. Still, dependence on a specific delivery environment
and its constraints regarding regions, logs, and network paths is strengthened.

An alternative class of competing approaches is associated not so much with the provider
as with the choice of execution platform and the degree of autonomy: some teams move the
intellectual layer to Python/FastAPI to simplify the implementation of asynchronous scenarios,
background operations, and integration with data-processing tools; in doing so, the standard
background-task mechanism in FastAPI supports moving post-processing out of the
synchronous response path, thereby bringing the architecture closer to the queue + workers
pattern even without the immediate introduction of a separate broker (FastAPI, n.d.). Where
serverless delivery is required, such a service can be packaged into a container image and

http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

deployed in AWS Lambda, enabling lightweight regional request-ingress points and scaling
according to actual load. However, the constraints of the runtime environment and cold starts
must be taken into account (AWS, n.d.). Finally, as an alternative to fully managed models, the
Llama family is increasingly considered, where self-deployment and control over data and
latency are permitted; in this case, the architecture is typically separated into an inference layer
(a dedicated server/endpoint for the model) and an application orchestration layer (for example,
the same FastAPI or another gateway), and the choice becomes a compromise between
predictability of per-call costs and capital expenditures for compute resources and operations
(GitHub, n.d.).

Serverless becomes more expensive than containers when the LLM layer ceases to be a
rarely called function and becomes a constantly loaded service: a steady stream of requests
throughout the workday or around the clock, a high proportion of long streaming sessions, and
regular background tasks that keep the execution busy for a significant amount of time. Under
these conditions, the per execution cost begins to scale linearly with the number of calls and
the duration of the execution, and you additionally pay for the inevitable overhead of starting
and initializing the environment, loading dependencies, establishing connections, and
recreating local caches, because function instances are short-lived and frequently recreated.
The container model becomes economically preferable when you can maintain a small pool of
constantly running instances, thereby reusing warmed-up dependencies, stable connections,
local cache, and a controlled concurrency pool. It also becomes more cost-effective when you
need predictable latency without the need for special always-on modes of serverless computing.
If you are forced to maintain warm-up or reserve capacity to prevent cold starts, serverless
effectively loses the advantage of variable pricing and approaches the cost of always-on
capacity, while remaining more stringent in terms of execution time limits and state
management. Finally, serverless often loses out in terms of total cost of ownership when the
logic involves toolchains and complex orchestration with intermediate state: the need for
external state storage, deduplication, idempotency, and retries increases the share of
infrastructure operations per request, while containers allow you to implement the exact
mechanisms with fewer external calls and denser process-level observability.

Infrastructure hosting the machine-intelligence layer is as fragile as prompt logic, so
operational and financial questions must be addressed concurrently. In practice, provisioning
code emerges first; modular resource descriptions capture cluster composition, worker image
versions, and network parameters in a human-readable template. A single manifest change
yields a predictable plan; a CI/CD pipeline attached to the repository wraps the plan into an
artifact, signs it, and rolls it across environments. Binding a provisioning state store to
immutable container tags yields determinism, as the same template consistently yields the same
result in both test and production environments. Secret channels deliver model keys and broker
tokens without requiring entry into the commit history, thereby minimizing leakage risk.

As applications begin to consume tokens actively, the scene shifts: accounting and cost
forecasting take center stage. Compute providers throttle not only technically but fiscally,
imposing per-minute character limits and monthly caps. To avoid blocks or uncontrolled
spending, monitoring is configured with a dual-track approach: metric streams compute real-
time consumption, and a scheduler extrapolates to period-end. If a forecast exceeds a
predefined threshold, the system signals an operations chat or temporarily throttles call
frequency. Such auto-regulation is less expensive than emergency credit line extensions.

The collection and storage of model-access logs adhere to data protection regulations.
User text is trimmed to context-relevant fragments, and identifiers are anonymized before being
stored in an indexable format. Encrypted backups, delayed deletion, and strict role-based access
policies render logs an analytic asset without becoming a leakage point. During external audits,

about:blank

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

it is sufficient to present rotation configurations and proof that personal fields do not extend
beyond the contractually specified region.

Architecture evolves through several stages. A project begins as a monolith with direct
model-library calls, shortest path, and thus, it is natural for idea validation. As parallel sessions
grow, Al-communication logic moves to a separate proxy, shortening core-code release times
and increasing security. Next come the queue and background workers: heavy jobs migrate
from the synchronous path to asynchronous execution, accompanied by a RAG layer that
injects private knowledge into the context. When the audience spans continents, the engine
transitions to serverless edge functions: latency falls to the network-stack bound, and payment
becomes strictly proportional to actual usage. Throughout, central orchestration, compensation
logs, and budget sentinels persist, ensuring the new topology remains as governable as the very
first line of code. Thus, LLM-integration resilience is determined not only by engineering
patterns but also by fine-tuned token economics and data-handling modes, enabling scaling
without budget shocks or regulatory collisions.

CONCLUSION

Architectural patterns for integrating LLMs into Node.js server applications represent
not merely another technological iteration but a shift to a new paradigm of server-logic design,
where computational speech becomes as infrastructural as a database or message broker.
Empirical findings and market metrics analyzed herein indicate that sustainable LLM
deployment necessitates the concurrent management of three variables: throughput, token cost,
and service-layer observability. Only in their concerted balance does a model transform from
smart add-on into a structural architectural element, delivering measurable efficiency gains
without degrading operational characteristics.

The analysis suggests that architectural dynamics follow a law of gradual complication,
progressing from monolithic direct library calls to an isolated proxy, then to job queues, and
ultimately to a distributed serverless infrastructure at the edge. Each turn of this evolution is
justified not by aesthetic design preferences but by concrete metrics, rising parallel sessions,
increasing context lengths, and geographic audience expansion. Simultaneously, the shift
toward microservice modularity and asynchronous patterns becomes not only a technical but
also an economic imperative: token price and response latency act as coequal variables in the
architectural equation.

Therefore, integrating LLMs into the Node.js milieu cannot be reduced to a simple API
call. It is a process of systemic coupling among engineering, the FinOps discipline, and data
ethics, wherein every new feature inevitably becomes part of a governed ecosystem, with
quotas, logs, version control, and privacy policy. The ultimate resilience of such architecture
is determined not by peak performance but by its capacity to remain deterministic amid model
updates, worker-pool growth, and provider changes. In this sense, LLM-integration patterns
constitute a modern analogue of classic principles of dependable systems: component
independence, infrastructure reproducibility, and cost predictability.

The practical result of this article is a systematization of robust integration topologies
and a logic for selecting them as load and complexity increase. Direct invocation of a model
within an application is only justified under low-traffic conditions and prioritizing production
speed. Still, it strengthens coupling and blurs the distinction between update and security risks,
as well as domain logic. Moving LLM communication to a proxy service creates a contract
boundary. It centralizes token accounting, limiting, prompt versioning, streaming, and caching,
allowing the LLM layer to be changed independently of the rest of the system.

For long documents and complex tasks, the author emphasizes the need for queues and
background workers, which remove HTTP traffic blocks and enable horizontal scaling of
processing. However, this approach requires consideration of token costs during parallelism

http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

and autoscaling. For responses based on private corpora, a RAG layer is introduced, featuring
separate indexing, retrieval, and generation stages, as well as an index lifecycle discipline,
because source updates directly impact reproducibility and quality. For action scenarios, a
function call coordinator with strict JSON contracts is described, which requires idempotency
and compensation in multi-step chains.

For a global audience, a serverless edge is proposed as a means of reducing network
latency; however, its limitations are emphasized, including cold starts and execution time
limits, which necessitate the division of computations into a fast edge layer and a slower
background stage. A key conclusion of the article is that operational maturity is integral to the
architecture: call tracing, token metrics, model version control, and experimentation
mechanisms are necessary, as well as reproducible infrastructure deployment, financial
consumption forecasting, and data protection rules in logs. The author's final position is that
LLM cannot be treated as just another library: it is an external computing layer with quotas and
pricing, and resilience is achieved only through the simultaneous management of performance,
costs, and observability.

Consequently, a mature approach to incorporating language models into server
applications treats them not as an external service, but as an autonomous computational
intelligence layer subject to the same laws of scaling, orchestration, and budget planning as
other elements of an industrial backend. In this synthesis of engineering rigor and adaptive
cognition lies the strategic significance of the architectural patterns considered for the next
generation of distributed systems.

REFERENCES

Amazon Bedrock. (n.d.). Anthropic Claude Messages API. Amazon Bedrock. Retrieved
December 7, 2025, from https://docs.aws.amazon.com/bedrock/latest/userguide/model-
parameters-anthropic-claude-messages.html

Aryan, A., Nain, A. K., McMahon, A., Meyer, L. A., & Sahota, H. S. (2023). The Costly
Dilemma: Generalization, Evaluation and Cost-Optimal Deployment of Large Language
Models. Arxiv. https://doi.org/10.48550/arxiv.2308.08061

AWS. (n.d.). Deploy Python Lambda functions with container images - AWS Lambda. AWS.
Retrieved December 8, 2025, from
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html

Azra, J. M. A. (2024). Exploring Observability Design Patterns of Microservices: Challenges
and Solutions. [International Journal for Multidisciplinary Research, 6(2).
https://doi.org/10.36948/ijfmr.2024.v06102.21600

Chondamrongkul, N., & Sun, J. (2023). Software evolutionary architecture: Automated
planning for functional changes. Science of Computer Programming, 230, 102978.
https://doi.org/10.1016/j.scic0.2023.102978

Claude Docs. (n.d.). Streaming Messages. Claude Docs. Retrieved December 5, 2025, from
https://platform.claude.com/docs/en/build-with-claude/streaming

Dhaouadi, M., Spencer, K. M. B., Varnum, M. H., Grubb, A. M., & Famelis, M. (2021).
Towards a Generic Method for Articulating Design-time Uncertainty. The Journal of
Object Technology, 20(3). https://doi.org/10.5381/j0t.2021.20.3.a3

Esparza-Peidro, J., Mufioz-Escoi, F. D., & Bernabéu-Auban, J. M. (2024). Modeling
microservice architectures. The Journal of Systems and Software, 213, 112041.
https://doi.org/10.1016/j.js5.2024.112041

Farshidi, S., Jansen, S., & van der Werf, J. M. (2020). Capturing software architecture
knowledge for pattern-driven design. Journal of Systems and Software, 169, 110714.
https://doi.org/10.1016/5.jss.2020.110714

about:blank
https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
https://doi.org/10.48550/arxiv.2308.08061
https://doi.org/10.48550/arxiv.2308.08061
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html
https://doi.org/10.36948/ijfmr.2024.v06i02.21600
https://doi.org/10.36948/ijfmr.2024.v06i02.21600
https://doi.org/10.36948/ijfmr.2024.v06i02.21600
https://doi.org/10.1016/j.scico.2023.102978
https://doi.org/10.1016/j.scico.2023.102978
https://doi.org/10.1016/j.scico.2023.102978
https://platform.claude.com/docs/en/build-with-claude/streaming
https://platform.claude.com/docs/en/build-with-claude/streaming
https://platform.claude.com/docs/en/build-with-claude/streaming
https://doi.org/10.5381/jot.2021.20.3.a3
https://doi.org/10.5381/jot.2021.20.3.a3
https://doi.org/10.1016/j.jss.2024.112041
https://doi.org/10.1016/j.jss.2024.112041
https://doi.org/10.1016/j.jss.2024.112041
https://doi.org/10.1016/j.jss.2020.110714
https://doi.org/10.1016/j.jss.2020.110714
https://doi.org/10.1016/j.jss.2020.110714

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

FastAPl. (n.d.). Background Tasks. FastAPl. Retrieved December §, 2025, from
https://fastapi.tiangolo.com/tutorial/background-tasks/

Ghorbian, M., & Ghobaei-Arani, M. (2025). Serverless Computing: Architecture, Concepts,
and Applications. ArXiv. https://doi.org/10.48550/arxiv.2501.09831

Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant ~ web services. @~ ACM SIGACT News, 33(2), S5I.
https://do1.org/10.1145/564585.564601

GitHub. (n.d.). llama3. GitHub. Retrieved December 9, 2025, from https://github.com/meta-
llama/llama3/blob/main/MODEL _CARD.md

Han, T., Fang, C., Zhao, S., Ma, S., Chen, Z., & Wang, Z. (2024). Token-Budget-Aware LLM
Reasoning. ArXiv. https://doi.org/10.48550/arxiv.2412.18547

Klesel, M., & Wittmann, H. F. (2025). Retrieval-Augmented Generation (RAG). Business &
Information Systems Engineering, 67, 551-561. https://doi.org/10.1007/s12599-025-
00945-3

LangChain. (2024). LangChain State of Al Agents Report. LangChain.
https://www.langchain.com/stateofaiagents

Legashev, L., Shukhman, A., Badikov, V., & Kurynov, V. (2025). Using Large Language
Models for Goal-Oriented Dialogue Systems. Applied Sciences, 15(9), 4687.
https://doi.org/10.3390/app 15094687

Li, B., Peng, X., Xiang, Q., Wang, H., Xie, T., Sun, J., & Liu, X. (2021). Enjoy your
observability: an industrial survey of microservice tracing and analysis. Empirical
Software Engineering, 27(1), 5507. https://doi.org/10.1007/s10664-021-10063-9

Lytra, 1., Carrillo, C., Capilla, R., & Zdun, U. (2019). Quality attributes use in architecture
design decision methods: research and practice. Computing, 102(2), 551-572.
https://doi.org/10.1007/s00607-019-00758-9

Microsoft Learn. (2025, August 21). Azure OpenAl in Azure AI Foundry Models Quotas and
Limits. Microsoft Learn. https://learn.microsoft.com/en-us/azure/ai-
foundry/openai/quotas-limits?tabs=REST

Mordor Intelligence. (2025). Retrieval Augmented Generation Market Size, Share & 2030

Growth Trends Report. Mordor Intelligence.
https://www.mordorintelligence.com/industry-reports/retrieval-augmented-generation-
market

OpenAl. (2024, July 18). GPT-4o0 mini: advancing cost-efficient intelligence. OpenAl.
https://openai.com/index/gpt-40-mini-advancing-cost-efficient-intelligence/

OpenAl. (2025a). API Pricing. OpenAl. https://openai.com/api/pricing/

OpenAl. (2025b). Introducing GPT-4.1 in the API. OpenAl. https://openai.com/index/gpt-4-1/

Polan, S. (2025). Retrieval-Augmented Generation: Architecture, Techniques, and
Evaluations. Journal of Modern Technology and Engineering, 10(1), 42-56.
https://doi.org/10.62476/jmte.10142

Soylemez, M., Tekinerdogan, B., & Kolukisa Tarhan, A. (2022). Challenges and Solution
Directions of Microservice Architectures: A Systematic Literature Review. Applied
Sciences, 12(11), 5507. https://doi.org/10.3390/app12115507

Stackoverflow. (2025). 2025 Stack Overflow Developer Survey. Stackoverflow.
https://survey.stackoverflow.co/2025/

TechSci Research. (2024). Microservices Architecture Market By Size, Share, and Forecast
2029. TechSci Research. https://www.techsciresearch.com/report/microservices-
architecture-market/25049.html

The Business Research Company. (2025). Microservices Architecture Global Market Report
2025. The Business Research Company.

http://www.ejsit-journal.com/
https://fastapi.tiangolo.com/tutorial/background-tasks/
https://fastapi.tiangolo.com/tutorial/background-tasks/
https://fastapi.tiangolo.com/tutorial/background-tasks/
https://doi.org/10.48550/arxiv.2501.09831
https://doi.org/10.48550/arxiv.2501.09831
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.48550/arxiv.2412.18547
https://doi.org/10.48550/arxiv.2412.18547
https://doi.org/10.1007/s12599-025-00945-3
https://doi.org/10.1007/s12599-025-00945-3
https://doi.org/10.1007/s12599-025-00945-3
https://www.langchain.com/stateofaiagents
https://www.langchain.com/stateofaiagents
https://www.langchain.com/stateofaiagents
https://doi.org/10.3390/app15094687
https://doi.org/10.3390/app15094687
https://doi.org/10.3390/app15094687
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1007/s00607-019-00758-9
https://doi.org/10.1007/s00607-019-00758-9
https://doi.org/10.1007/s00607-019-00758-9
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/quotas-limits?tabs=REST
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/quotas-limits?tabs=REST
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/quotas-limits?tabs=REST
https://www.mordorintelligence.com/industry-reports/retrieval-augmented-generation-market
https://www.mordorintelligence.com/industry-reports/retrieval-augmented-generation-market
https://www.mordorintelligence.com/industry-reports/retrieval-augmented-generation-market
https://www.mordorintelligence.com/industry-reports/retrieval-augmented-generation-market
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/api/pricing/
https://openai.com/api/pricing/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://doi.org/10.62476/jmte.10142
https://doi.org/10.62476/jmte.10142
https://doi.org/10.62476/jmte.10142
https://doi.org/10.3390/app12115507
https://doi.org/10.3390/app12115507
https://survey.stackoverflow.co/2025/
https://survey.stackoverflow.co/2025/
https://survey.stackoverflow.co/2025/
https://www.techsciresearch.com/report/microservices-architecture-market/25049.html
https://www.techsciresearch.com/report/microservices-architecture-market/25049.html
https://www.techsciresearch.com/report/microservices-architecture-market/25049.html
https://www.thebusinessresearchcompany.com/report/microservices-architecture-global-market-report

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

https://www.thebusinessresearchcompany.com/report/microservices-architecture-
global-market-report

Toosi, A. N., Javadi, B., losup, A., Smirni, E., & Dustdar, S. (2024). Serverless Computing for
Next-generation Application Development. Future Generation Computer Systems, 164,
107573. https://doi.org/10.1016/j.future.2024.107573

Wan, Z., Zhang, Y., Xia, X., Yi, J., & Lo, D. (2023). Software Architecture in Practice:
Challenges and Opportunities. Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
https://doi.org/10.1145/3611643.3616367

Waseem, M., Liang, P., Shahin, M., Di Salle, A., & Marquez, G. (2021). Design, monitoring,
and testing of microservices systems: The practitioners’ perspective. Journal of Systems
and Sofitware, 182, 111061. https://doi.org/10.1016/].jss.2021.111061

about:blank
https://www.thebusinessresearchcompany.com/report/microservices-architecture-global-market-report
https://www.thebusinessresearchcompany.com/report/microservices-architecture-global-market-report
https://doi.org/10.1016/j.future.2024.107573
https://doi.org/10.1016/j.future.2024.107573
https://doi.org/10.1145/3611643.3616367
https://doi.org/10.1145/3611643.3616367
https://doi.org/10.1145/3611643.3616367
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1016/j.jss.2021.111061

