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ABSTRACT 

This article examines the evolution and systematization of architectural patterns for integrating 

large language models (LLMs) into server applications built on the Node.js platform, against 

the backdrop of the rapid diffusion of generative technologies in industrial software 

development and the expanding market for Retrieval-Augmented Generation (RAG) solutions. 

The relevance stems from the fact that by 2025, LLMs will have become an indispensable 

component of digital products, while server architectures must embed computational speech 

into existing infrastructures under constraints of token budgets, call costs, and network latency. 

The objective is to identify and analytically describe stable architectural patterns that enable 

efficient, predictable LLM integration in Node.js backends. Methodologically, the work 

combines systemic architectural analysis, modeling of interactions with LLM APIs, and 

content analysis of industrial practices, enabling the author to construct an engineering-

economic efficiency model for each configuration. The article’s novelty lies in formulating the 

concept of a balanced LLM-integration architecture in which throughput, token price, and 

service-layer observability are treated as interdependent architectural variables. An 

evolutionary pathway is proposed for transitioning from monolithic model calls to 

microservice and serverless patterns, informed by market growth dynamics and the scaling of 

compute resources. The article will benefit researchers and engineers engaged in server-

application architectural design, cloud-service developers, and AI-engineering specialists 

aiming for resilient and cost-balanced deployment of LLM technologies in production 

environments. 

 

Keywords: large language models, Node.js, architectural patterns, microservices, serverless 

computing 

 

INTRODUCTION 

By 2025, large language models will have effectively become standard in industrial 

development. According to the annual Stack Overflow survey, over 80% of practicing 

developers have already used the OpenAI GPT family in work projects, with this share nearly 

doubling over the past two years (Stack Overflow, 2025). Such high penetration gives rise to a 

new engineering expectation: the server must be able to converse, which means that any 

modern Node.js backend inevitably faces the task of embedding LLM functionality as naturally 

as databases or message queues once did. 

The reason is not mere trend-following; it is product economics. The market for retrieval-

augmented generation (RAG) systems is already estimated to be nearly $2 billion, and 

according to Mordor Intelligence, it is growing at a compound annual rate exceeding 39% 

through 2030 (Mordor Intelligence, 2025). For businesses, this implies that the costs of 

implementing an LLM layer are increasingly recouped not by quarter’s end but by sprint 

completion: models reduce support time, improve support conversion, and create new paid 

knowledge-synthesis services. Consequently, for backend developers, early design of 
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architectural extension points that can accept external LLM APIs or local weights without 

requiring capital refactoring is advantageous. 

In practice, needs crystallize into three task families. First, conversational interfaces, 

where an LLM generates replies or the user acts, are typically implemented in the Node.js 

ecosystem via streaming SSE to deliver text with negligible perceived delay. Second, final-

document generation, reports, conversation summaries, and automated instructions, where 

asynchronous execution via a job queue is favored to avoid blocking HTTP traffic. Third, RAG 

services, which combine vector search with the model and expose an API for answers, are 

rapidly becoming a mandatory component of enterprise knowledge, as corroborated by the 

aforementioned market dynamics. 

Architecture, however, encounters the physical limits of LLM APIs. First, token limits: 

even the mini version of GPT-4o supports a 128,000-token context window, which is appealing 

for documents yet requires strict input text normalization, or costs scale nonlinearly (OpenAI, 

2024). Second, cost: the same GPT-4o mini is roughly sixty cents per million input tokens and 

two dollars forty cents per million output tokens. Hence, each superfluous uncached call 

translates directly into an invoice (OpenAI, 2025a). Finally, latency: even in an optimized 

stack, OpenAI states that GPT-4.1 mini halves latency relative to GPT-4o, yet the timescale 

remains seconds rather than milliseconds, compelling front-end designs that support 

progressive output delivery and timeouts for long contexts (OpenAI, 2025b). Thus, competent 

LLM integration in Node.js is a balance between linguistic power and engineering restraint, 

attainable only by accounting for real-world figures of tokens, dollars, and milliseconds. 

 

MATERIALS AND METHODOLOGY 

 

Research Methodology 

The study of architectural patterns for integrating LLMs into Node.js server applications 

relies on a systematic analysis of contemporary engineering and economic sources, including 

model vendor documentation, industry reports on market dynamics, cloud provider practices, 

and empirical observations from open repositories. Eight primary sources were analyzed, 

spanning three thematic blocks: technological evolution of LLM APIs and their constraints 

(OpenAI, 2024; OpenAI, 2025a; OpenAI, 2025b), practices of quota management and compute 

scaling in clouds (Microsoft Learn, 2025), and trends in microservice architecture and 

streaming generation (The Business Research Company, 2025; LangChain, 2024). 

The theoretical foundation comprises studies on RAG market growth, demonstrating a 

shift from experimental LLM integrations to robust product scenarios in which search and 

generation are unified within a single server boundary (Polan, 2025). According to Mordor 

Intelligence (2025), the RAG market is growing at an annual rate of over 39%, creating a 

compelling objective to devise architectural templates that optimize latency and call costs. As 

a practical framework, the work utilized OpenAI API performance and pricing metrics 

(OpenAI, 2025a), including input/output token prices, context limits (128,000 tokens), average 

generation latency, and worker load distribution. These parameters enabled the construction of 

an engineering-economic model, wherein each architectural pattern is evaluated by composite 

efficiency, which is the ratio of performance (throughput × latency) to operational expense 

(token cost × invocation rate) (Aryan et al., 2023). 

Methodologically, the study combines comparative architectural analysis, experimental 

modeling of Node.js service interactions with LLM APIs, and content analysis of industrial 

deployments. First, six baseline integration topologies were mapped: direct in-process model 

call, proxy API, job queue with workers, retrieval-augmented generation (RAG) layer, action-

coordination (function-calling hub), and serverless edge deployment. For each topology, 
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characteristics were recorded: mean response time, degree of process isolation, sensitivity to 

traffic growth, and token volume per transaction. 

The criteria for selecting and comparing patterns in this article are defined by strictly 

measurable engineering and economic variables, as well as the requirement for a balance 

between throughput and latency, token price, component isolation, and observability maturity. 

The final suitability of the configurations is assessed through composite efficiency as the ratio 

of throughput (throughput × latency) to operational costs (token cost × invocation rate). 

The testing and performance recording parameters in this paper include average response 

time, degree of process isolation, sensitivity to traffic growth, and token volume per 

transaction, using OpenAI performance and pricing metrics (including a context limit of 

128,000 tokens and generation latency) and cloud provider quota restrictions. The sample 

limitations stem directly from the analysis's reliance on primary sources and public quota 

policies, which do not provide detailed breakdowns by hardware configuration, Node.js 

version, and network RTT. 

 

Theoretical Definitions 

Software architecture in contemporary theory is construed as the aggregate of a system’s 

key structures, comprising elements, the relations among them, and the rules governing their 

composition; decisive, however, is not the mere inventory of modules, but those design 

decisions that constrain the space of subsequent change and thereby determine the 

controllability of product evolution (Wan et al., 2023). In this sense, architecture functions 

simultaneously as a descriptive model (what is connected and in what manner) and as a 

normative frame (what may be altered without compromising integrity). At the same time, 

architectural quality manifests as the system’s capacity to preserve specified properties under 

increasing load, escalating scenario complexity, and shifting external dependencies. Such an 

interpretation binds architecture to the practice of trade-off analysis: target quality attributes, 

such as latency, throughput, reliability, security, and maintainability, are not added at the end, 

but compete with one another at the level of structural decisions; consequently, architectural 

choice is more appropriately understood as optimization under constraints rather than as a 

search for a singular correct solution. For this reason, applied architectural engineering assigns 

particular importance to the discipline of explicitly documenting decisions and their 

consequences, including scenario-based analysis of quality attributes and the managed 

evolution of architecture as a continuous process rather than a one-off design stage (Lytra et 

al., 2019). 

The key concepts required for a systematic description of architectural decisions are 

architectural style and architectural pattern. An architectural style specifies a general mode of 

component decomposition and interaction (e.g., service decomposition, event-driven 

interaction, layered organisation), thereby defining typical boundaries and permissible 

dependencies (Esparza-Peidro et al., 2024). A pattern, in turn, fixes a stable configuration of 

structural decisions for a recurring problem, including characteristic trade-offs and conditions 

of applicability (Farshidi et al., 2020). It is essential to distinguish a pattern from an 

implementation technique: a pattern does not describe a specific library or protocol, but rather 

a persistent structure (for example, offloading computationally intensive operations into an 

asynchronous path) that can be realised by different means. Work on evolutionary architecture 

emphasises that under high requirements volatility, architectural decisions must be verifiable 

over time: mechanisms are needed that not only permit change, but also protect critical system 

properties from imperceptible degradation, thereby transforming architecture from a static 

blueprint into a managed system of constraints and feedback (Chondamrongkul & Sun, 2023). 

Decomposition into autonomous services is typically described as an architectural style 

in which independent deployment and contract-based interface alignment are used to scale 
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development and reduce change risk; however, such independence is attained at the cost of 

more complex distributed interactions, the emergence of network uncertainty, and the need for 

strict observability (Azra, 2024). Academic surveys of microservices emphasize that gains in 

modularity and localization of change are accompanied by increased requirements for 

dependency management, resilience to partial failures, and request traceability across service 

boundaries; therefore, such systems require architectural coordination mechanisms, including 

operation idempotency, compensating actions, and explicit management of the state of long-

lived processes (Söylemez et al., 2022). Observability in this context should be understood not 

as the presence of logs, but as the ability to reconstruct causal relationships among events, 

latencies, and failures in a distributed system from operational data. Studies of industrial 

practice in distributed tracing indicate that the very complexity of interpreting traces and 

aligning observability tooling becomes one of the constraints on effective microservice 

operations (Li et al., 2021). 

Serverless computing constitutes a distinct deployment style in which the unit of 

execution is a function, while the platform assumes scaling, scheduling, and a substantial 

portion of operational responsibilities (Ghorbian & Ghobaei-Arani, 2025). In theory, this 

reduces barriers to entry and improves economics under variable load, but introduces specific 

constraints, most notably cold starts, upper bounds on execution time, and dependence on the 

runtime environment. Research works emphasize that the serverless approach is rational where 

it is beneficial to transfer resource management to the platform and pay for actual consumption; 

however, for long-running operations and complex context preparation, an architectural 

separation becomes necessary: heavy stages are moved into asynchronous paths, while 

boundary functions are responsible for rapid request intake, response formation, and correct 

enforcement of time limits (Toosi et al., 2024). Accordingly, serverlessness should be 

interpreted not as a universal replacement for servers, but as a means of shifting the boundary 

of responsibility, which necessitates rigorous design of the computation life cycle and explicit 

control of failures and retries. 

The integration of large language models into server systems can be succinctly described 

through the concepts of computational dialogue, context, and constrained resource budgets. 

Context refers to the totality of input data provided to the model to generate an answer 

(Legashev et al., 2025). In practical operation, it is expressed in tokens and thus becomes a 

measurable resource that competes with latency and execution cost (Han et al., 2024). A 

consequential theoretical implication follows: the language-model layer within an architecture 

should be treated as an external computational subsystem with its own quotas and price, rather 

than as an ordinary library; therefore, architectural decisions must include control of context 

volume, reuse of results, management of call parallelism, and observability of costs at the 

transaction level. Retrieval-augmented generation is defined as a class of architectures in which 

the generative response is formed not only from the model’s parameters, but also from retrieved 

knowledge fragments drawn from an external corpus (Klesel & Wittmann, 2025). In the basic 

scientific formulation, this is a combination of parametric memory and non-parametric memory 

in the form of an indexable store, which enables knowledge updates without retraining and 

links responses to sources, while simultaneously shifting part of the responsibility for result 

quality onto retrieval quality and the discipline of index management. As a result, an 

appropriate theoretical framework for such systems relies on architectural categories of 

boundaries, contracts, quality attributes, and managed evolution: the language model becomes 

one component whose behavior must be stabilized by engineering guardrails, while 

reproducibility, observability, and cost become as primary characteristics of architecture as 

latency and fault tolerance. 
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RESULTS AND DISCUSSION 

A sound LLM-service integration architecture begins with strictly measurable 

parameters; otherwise, discussion of templates devolves into guesswork. Foremost are 

throughput and latency (Dhaouadi et al., 2021). Even default access to GPT-4 on Azure yields 

450,000 tokens per minute and 2,700 requests per minute, about 45 RPS at an average 100 

tokens per request. These are default rate limits that Microsoft assigns to Azure subscriptions 

based on model and region. Microsoft's public documentation doesn't provide breakdowns like 

which GPU/CPU, which Node.js version, what RTT because these are service capacity 

allocation policies, not client SDK measurements. Moving to an enterprise tier increases limits 

by an order of magnitude but entails contractual procedures and delicate quota orchestration 

(Microsoft Learn, 2025). Therefore, if long documents must be served, the architecture must 

include streaming delivery and background job queues; for short chat sessions, a microservice 

with an SSE stream suffices. 

Costs are measured not in virtual cores but in tokens. Hence, an economical scheme 

includes aggressive prompt-hash caching, elision of repeated history segments, and progressive 

reliance on cached input. The financial model directly dictates the technical one: any solution 

that fails to reduce total token flow is destined to fail the FinOps audit. 

Isolating business logic from the AI core is no longer an architect’s luxury, but a market 

necessity. The global microservices solutions market is expected to grow from USD 7.4 billion 

in 2025 to USD 15.6 billion by 2029, at a 20.6% CAGR, as shown in Figure 1 (The Business 

Research Company, 2025). According to the TBRC methodology, market assessments and 

forecasts are formed based on gold-standard sources and comparison/verification of market 

values through company financial indicators, statistical modeling (correlations, regressions, 

extrapolation, etc.) and mandatory expert validation (including interviews). The forecast is 

additionally adjusted taking into account macrofactors, including GDP, and qualitative 

assumptions.  

 

 
Figure 1. Global Microservices Solutions Market Forecast  

(The Business Research Company, 2025) 
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Such tempo is impossible without independent release cycles: the LLM layer changes 

weekly, while domain services follow quarterly versions. A crisp boundary is not only the 

ability to patch without stopping the monolith but also insurance against regressions: rolling 

back one container is simpler than rebuilding an entire process. 

Finally, verifiability and observability transform a diagram into a working product 

(Waseem et al., 2021). Field statistics indicate that 39.8% of teams prefer offline evaluation of 

model outputs, whereas only 32.5% use online metrics, real-time is harder to control than batch 

logs, as shown in Figure 2 (LangChain, 2024).  

 

 
Figure 2. Adoption of Control Mechanisms for AI Agents (LangСhain, 2024) 

 

Estimates from TechSci Research (2024) show similar forecasts: The Global 

Microservices Architecture Market was valued at USD 5.67 billion in 2023 and is expected to 

reach USD 14.85 billion by 2029. 

Hence, the requirements include tracing every call, collecting token metrics, and 

automatically performing A/B splits across model versions. Lacking these, the DevOps loop 

chokes, and incidents disappear into a black box that must be probed manually. 

Ultimately, pattern selection seeks balance among four vectors: mechanical throughput, 

monetary token price, component isolation, and observability maturity. Ignoring any one 

causes the others to drift beyond tolerable bounds, pushing the project off schedule. 

Direct in-process API call. Integrating the model’s API within a single process is 

tempting for its minimal coupling. A controller receives the request, formats it in a service, 

and, without intermediate network hops, invokes the provider’s client library. There is no 

serialization, no additional routing layers so that a feature can be implemented in just a few 

lines. The server maintains a familiar directory structure; tests are mocked using standard 

methods; deployment follows the same pipeline as the rest of the code. 

The proximity has a flip side. Any model version update entails a full application release; 

vendor dependency hardens, making provider switching or even pricing plan changes more 

onerous than prototyping suggests. Load shares the same thread pool as web handlers. 

Moreover, security criteria are intertwined with domain logic because access tokens and billing 

counters are located within the process environment. 

Nevertheless, this option is justified when the load is low and time-to-market is a primary 

concern. In a corporate prototype or early-stage startup, repackaging into a microservice often 

appears to be premature optimization; validating the hypothesis and estimating the per-request 
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cost is more important. If traffic volume is measured in tens of calls per minute and the model 

is only needed for brief outputs, the monolithic path remains the most rational. 

Proxy service. Once external clients or multiple internal teams begin to consume the 

server, tight coupling to the model impedes growth. Extracting AI-communication logic into a 

dedicated edge layer turns it into an autonomous contract. This layer accepts external requests 

in a frontend-friendly format, most often a text interface over a representation transfer protocol, 

and immediately opens an output stream, allowing the user to view results as they are 

generated. The edge service becomes the central point for token accounting, limit enforcement, 

and prompt versioning; there is no need to rebuild other services, one container update suffices. 

Deployment follows cloud-standard practice: build a container image, bake the 

dependency base into a layer, and ship it to an orchestrator cluster. Being small, the service 

initially requires a single replica; horizontal scaling can be achieved through an autoscaler. As 

load rises, new instances surface automatically; process isolation prevents mutual interference 

between text generation and core business functions. 

The separate ingress also enables a strategic cache. Model responses, especially those 

grounded in static system prompts, often repeat. Storing results in fast memory reduces token 

spend and eliminates latency. Above the cache, a rate limiter protects against abuse that would 

turn the service into a costly mining rig via request storms. These measures are introduced 

locally without touching neighboring microservices: business teams release on their cadence, 

while the AI team experiments with more efficient models without risking the broader 

landscape. 

Queue with background workers. Gradual load growth and expanding scenarios 

necessitate separating instantaneous user calls from heavyweight operations on long 

documents. In practice, this leads to an intermediate job queue, where the edge layer places a 

task description. An asynchronous worker then consumes the message and calls the language 

model. This three-segment craft, ingress, message broker, worker, avoids holding connections 

open until an answer is ready and frees web threads for new clients. The larger the input, the 

greater the gain: long generation or post-processing becomes background work; the user 

receives a quick confirmation identifier and can later poll task status. 

The message broker is pivotal. Choices include lightweight BullMQ, optimized for 

Node.js simplicity; classic RabbitMQ with flexible routing; and distributed Kafka, designed 

for end-to-end data streams. If the bet is thousands of parallel jobs and guaranteed delivery, a 

broker with a disk log and acknowledgments prevails. If minimal latency and simple 

deployment are the primary requirements, a memory-oriented solution built on top of a Redis 

cluster is sufficient. Regardless of brand, resilience requires durable queues and worker-restart 

policies in the event of abnormal termination. 

As the project grows, workers scale horizontally. Rather than rebuilding images, simply 

bring up additional instances with the same code; the broker distributes messages. Note, 

however, that concurrent worker and generation-intensity increases sharply raise token 

expenses, so autoscaling must consider price metrics, not just CPU load. Rotation also touches 

model updates: roll out a new prompt or parameters to a fraction of workers to observe answer 

quality before a complete switchover, with the option to roll back changes without impacting 

other services. 

RAG layer. When the application must answer questions grounded in private knowledge 

corpora, queues alone are insufficient. A retrieval-augmented layer emerges, in which the input 

text is first embedded, the nearest items are retrieved from a vector store, and the retrieved 

context is then fed to the model. The pipeline, encompassing ingest, indexing, retrieval, and 

generation, is designed to allow each stage to evolve independently. From a Node.js standpoint, 

a thin adapter over a generic dense-vector client suffices. Storage options include cloud-hosted 
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Chroma, fully managed Weaviate, or scalable Pinecone; the balance between storage cost and 

reverse-search speed primarily dictates the choice. 

The index lifecycle, unlike a classic database, requires special care. As source documents 

update, old embeddings lose relevance; therefore, incremental refresh and versioning are 

necessary to maintain reproducibility of the generation. A common tactic is to maintain two 

indices: the active one serves queries while a reserve is rebuilt on new data, followed by an 

atomic role swap. This eliminates inconsistency windows and enables quality control by 

comparing model answers on old vs. fresh knowledge before production rollout. 

Action coordination (function-calling hub). Shifting from passive generation to scenarios 

where the model orchestrates external actions requires a coordinator that binds language-engine 

intent to specific internal or third-party services. The coordinator accepts the model’s response 

as a strictly defined JSON object, in which each function is declared by a signature, namely, 

its name, arguments, and expected result. Developers define these signatures once; thereafter, 

the Node.js node automatically matches the model-provided structure to implementations and 

invokes the required method. Eliminating manual parsing reduces transformation errors and 

accelerates the addition of new actions, as a new service requires only a declarative entry. 

Complexity increases when the model requires multiple calls within a single session. The 

coordinator must persist intermediate states, check idempotency, and, where necessary, fold 

the chain into an atomic transaction. For example, if one must create an invoice and then 

confirm payment, the two steps form a logical pair: the failure of the second step must 

compensate for the first. The node implements this via an action log and compensation 

mechanisms akin to the saga pattern; even if the process crashes, the sequence can be recovered 

and completed correctly. 

Practical value emerges in integrations. CRM interaction becomes a natural dialogue: the 

model requests card creation, the coordinator executes it, the new record is returned, and the 

model’s next move composes a user notification. Payment is analogous: the model initiates an 

operation, receives a transaction ID, and either confirms the charge or reports failure. The user 

experiences a seamless conversation, unaware of numerous hidden network exchanges. 

Serverless edge. When serving a global audience, network transit to a central data center 

can exceed the time required for text generation. At this point, a serverless approach, where the 

model-calling function is deployed as close to the client as possible, is preferable. Amazon 

Lambda, Vercel Edge Functions, and Cloudflare Workers run code at distributed network 

nodes, charging strictly for actual resource usage. This scheme immediately addresses 

geographic distance but introduces constraints: cold starts increase first-request latency, and 

maximum runtime is capped. 

To minimize cold-start impact, functions are kept warm by small synthetic event trickles 

or by lazily loading dependencies after the first output tokens, creating the illusion of 

immediate response. For long messages, streaming results to the client stretches generation 

time without blocking the interface. Runtime limits are mitigated by process partitioning: heavy 

context construction executes in a background queue, while the serverless function formats the 

reply from prepared data. 

Proximity to the edge enables a cache shared by instances within a region. Storing 

request-response pairs in a distributed key store reduces token costs and variance in answers 

on repeated queries (Gilbert & Lynch, 2002). Since the key derives from a normalized-prompt 

hash, even slightly different requests can resolve to a shared result after canonicalization. The 

developer selects an expiration strategy and an affordable memory budget; the platform scales 

the rest. This triad, edge function, cache, and queue, serves a global audience at near-network 

latency without sacrificing generative richness. The above patterns are systematized in 

Figure 3. 
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Figure 3. Scaling AI Model Integration (compiled by the author based on his own 

recommendations) 

 

In applied practice, recommendations for integration cannot be rigidly tied to the Node.js 

+ OpenAI pair, because competing providers and model delivery channels impose different 

constraints on protocols, inference parameters, observability, and risk management. For 

example, Anthropic’s messaging interface explicitly provides a streaming mode via SSE, and 

stream implementations are available in standard toolkits for multiple languages, making it 

possible to reproduce the same user-facing properties (low perceived latency, incremental text 

output) outside the Node.js ecosystem as well (Claude Docs, n.d.). In addition, a variant occurs 

in which the model provider is not addressed directly; instead, the same model is consumed 

through a cloud marketplace of managed models: thus, Claude is available through Amazon 

Bedrock with formalized inference parameters, which changes the architectural framing of the 

task (Amazon Bedrock, n.d.). A unified point of quota enforcement, logging, and access control 

emerges at the level of the cloud platform. Still, dependence on a specific delivery environment 

and its constraints regarding regions, logs, and network paths is strengthened. 

An alternative class of competing approaches is associated not so much with the provider 

as with the choice of execution platform and the degree of autonomy: some teams move the 

intellectual layer to Python/FastAPI to simplify the implementation of asynchronous scenarios, 

background operations, and integration with data-processing tools; in doing so, the standard 

background-task mechanism in FastAPI supports moving post-processing out of the 

synchronous response path, thereby bringing the architecture closer to the queue + workers 

pattern even without the immediate introduction of a separate broker (FastAPI, n.d.). Where 

serverless delivery is required, such a service can be packaged into a container image and 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
10 

deployed in AWS Lambda, enabling lightweight regional request-ingress points and scaling 

according to actual load. However, the constraints of the runtime environment and cold starts 

must be taken into account (AWS, n.d.). Finally, as an alternative to fully managed models, the 

Llama family is increasingly considered, where self-deployment and control over data and 

latency are permitted; in this case, the architecture is typically separated into an inference layer 

(a dedicated server/endpoint for the model) and an application orchestration layer (for example, 

the same FastAPI or another gateway), and the choice becomes a compromise between 

predictability of per-call costs and capital expenditures for compute resources and operations 

(GitHub, n.d.).  

Serverless becomes more expensive than containers when the LLM layer ceases to be a 

rarely called function and becomes a constantly loaded service: a steady stream of requests 

throughout the workday or around the clock, a high proportion of long streaming sessions, and 

regular background tasks that keep the execution busy for a significant amount of time. Under 

these conditions, the per execution cost begins to scale linearly with the number of calls and 

the duration of the execution, and you additionally pay for the inevitable overhead of starting 

and initializing the environment, loading dependencies, establishing connections, and 

recreating local caches, because function instances are short-lived and frequently recreated. 

The container model becomes economically preferable when you can maintain a small pool of 

constantly running instances, thereby reusing warmed-up dependencies, stable connections, 

local cache, and a controlled concurrency pool. It also becomes more cost-effective when you 

need predictable latency without the need for special always-on modes of serverless computing. 

If you are forced to maintain warm-up or reserve capacity to prevent cold starts, serverless 

effectively loses the advantage of variable pricing and approaches the cost of always-on 

capacity, while remaining more stringent in terms of execution time limits and state 

management. Finally, serverless often loses out in terms of total cost of ownership when the 

logic involves toolchains and complex orchestration with intermediate state: the need for 

external state storage, deduplication, idempotency, and retries increases the share of 

infrastructure operations per request, while containers allow you to implement the exact 

mechanisms with fewer external calls and denser process-level observability. 

Infrastructure hosting the machine-intelligence layer is as fragile as prompt logic, so 

operational and financial questions must be addressed concurrently. In practice, provisioning 

code emerges first; modular resource descriptions capture cluster composition, worker image 

versions, and network parameters in a human-readable template. A single manifest change 

yields a predictable plan; a CI/CD pipeline attached to the repository wraps the plan into an 

artifact, signs it, and rolls it across environments. Binding a provisioning state store to 

immutable container tags yields determinism, as the same template consistently yields the same 

result in both test and production environments. Secret channels deliver model keys and broker 

tokens without requiring entry into the commit history, thereby minimizing leakage risk. 

As applications begin to consume tokens actively, the scene shifts: accounting and cost 

forecasting take center stage. Compute providers throttle not only technically but fiscally, 

imposing per-minute character limits and monthly caps. To avoid blocks or uncontrolled 

spending, monitoring is configured with a dual-track approach: metric streams compute real-

time consumption, and a scheduler extrapolates to period-end. If a forecast exceeds a 

predefined threshold, the system signals an operations chat or temporarily throttles call 

frequency. Such auto-regulation is less expensive than emergency credit line extensions. 

The collection and storage of model-access logs adhere to data protection regulations. 

User text is trimmed to context-relevant fragments, and identifiers are anonymized before being 

stored in an indexable format. Encrypted backups, delayed deletion, and strict role-based access 

policies render logs an analytic asset without becoming a leakage point. During external audits, 
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it is sufficient to present rotation configurations and proof that personal fields do not extend 

beyond the contractually specified region. 

Architecture evolves through several stages. A project begins as a monolith with direct 

model-library calls, shortest path, and thus, it is natural for idea validation. As parallel sessions 

grow, AI-communication logic moves to a separate proxy, shortening core-code release times 

and increasing security. Next come the queue and background workers: heavy jobs migrate 

from the synchronous path to asynchronous execution, accompanied by a RAG layer that 

injects private knowledge into the context. When the audience spans continents, the engine 

transitions to serverless edge functions: latency falls to the network-stack bound, and payment 

becomes strictly proportional to actual usage. Throughout, central orchestration, compensation 

logs, and budget sentinels persist, ensuring the new topology remains as governable as the very 

first line of code. Thus, LLM-integration resilience is determined not only by engineering 

patterns but also by fine-tuned token economics and data-handling modes, enabling scaling 

without budget shocks or regulatory collisions. 

 

CONCLUSION 

Architectural patterns for integrating LLMs into Node.js server applications represent 

not merely another technological iteration but a shift to a new paradigm of server-logic design, 

where computational speech becomes as infrastructural as a database or message broker. 

Empirical findings and market metrics analyzed herein indicate that sustainable LLM 

deployment necessitates the concurrent management of three variables: throughput, token cost, 

and service-layer observability. Only in their concerted balance does a model transform from 

smart add-on into a structural architectural element, delivering measurable efficiency gains 

without degrading operational characteristics. 

The analysis suggests that architectural dynamics follow a law of gradual complication, 

progressing from monolithic direct library calls to an isolated proxy, then to job queues, and 

ultimately to a distributed serverless infrastructure at the edge. Each turn of this evolution is 

justified not by aesthetic design preferences but by concrete metrics, rising parallel sessions, 

increasing context lengths, and geographic audience expansion. Simultaneously, the shift 

toward microservice modularity and asynchronous patterns becomes not only a technical but 

also an economic imperative: token price and response latency act as coequal variables in the 

architectural equation. 

Therefore, integrating LLMs into the Node.js milieu cannot be reduced to a simple API 

call. It is a process of systemic coupling among engineering, the FinOps discipline, and data 

ethics, wherein every new feature inevitably becomes part of a governed ecosystem, with 

quotas, logs, version control, and privacy policy. The ultimate resilience of such architecture 

is determined not by peak performance but by its capacity to remain deterministic amid model 

updates, worker-pool growth, and provider changes. In this sense, LLM-integration patterns 

constitute a modern analogue of classic principles of dependable systems: component 

independence, infrastructure reproducibility, and cost predictability. 

The practical result of this article is a systematization of robust integration topologies 

and a logic for selecting them as load and complexity increase. Direct invocation of a model 

within an application is only justified under low-traffic conditions and prioritizing production 

speed. Still, it strengthens coupling and blurs the distinction between update and security risks, 

as well as domain logic. Moving LLM communication to a proxy service creates a contract 

boundary. It centralizes token accounting, limiting, prompt versioning, streaming, and caching, 

allowing the LLM layer to be changed independently of the rest of the system. 

For long documents and complex tasks, the author emphasizes the need for queues and 

background workers, which remove HTTP traffic blocks and enable horizontal scaling of 

processing. However, this approach requires consideration of token costs during parallelism 
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and autoscaling. For responses based on private corpora, a RAG layer is introduced, featuring 

separate indexing, retrieval, and generation stages, as well as an index lifecycle discipline, 

because source updates directly impact reproducibility and quality. For action scenarios, a 

function call coordinator with strict JSON contracts is described, which requires idempotency 

and compensation in multi-step chains. 

For a global audience, a serverless edge is proposed as a means of reducing network 

latency; however, its limitations are emphasized, including cold starts and execution time 

limits, which necessitate the division of computations into a fast edge layer and a slower 

background stage. A key conclusion of the article is that operational maturity is integral to the 

architecture: call tracing, token metrics, model version control, and experimentation 

mechanisms are necessary, as well as reproducible infrastructure deployment, financial 

consumption forecasting, and data protection rules in logs. The author's final position is that 

LLM cannot be treated as just another library: it is an external computing layer with quotas and 

pricing, and resilience is achieved only through the simultaneous management of performance, 

costs, and observability. 

Consequently, a mature approach to incorporating language models into server 

applications treats them not as an external service, but as an autonomous computational 

intelligence layer subject to the same laws of scaling, orchestration, and budget planning as 

other elements of an industrial backend. In this synthesis of engineering rigor and adaptive 

cognition lies the strategic significance of the architectural patterns considered for the next 

generation of distributed systems. 

 

REFERENCES 

Amazon Bedrock. (n.d.). Anthropic Claude Messages API. Amazon Bedrock. Retrieved 

December 7, 2025, from https://docs.aws.amazon.com/bedrock/latest/userguide/model-

parameters-anthropic-claude-messages.html 

Aryan, A., Nain, A. K., McMahon, A., Meyer, L. A., & Sahota, H. S. (2023). The Costly 

Dilemma: Generalization, Evaluation and Cost-Optimal Deployment of Large Language 

Models. Arxiv. https://doi.org/10.48550/arxiv.2308.08061 

AWS. (n.d.). Deploy Python Lambda functions with container images - AWS Lambda. AWS. 

Retrieved December 8, 2025, from 

https://docs.aws.amazon.com/lambda/latest/dg/python-image.html 

Azra, J. M. A. (2024). Exploring Observability Design Patterns of Microservices: Challenges 

and Solutions. International Journal for Multidisciplinary Research, 6(2). 

https://doi.org/10.36948/ijfmr.2024.v06i02.21600 

Chondamrongkul, N., & Sun, J. (2023). Software evolutionary architecture: Automated 

planning for functional changes. Science of Computer Programming, 230, 102978. 

https://doi.org/10.1016/j.scico.2023.102978 

Claude Docs. (n.d.). Streaming Messages. Claude Docs. Retrieved December 5, 2025, from 

https://platform.claude.com/docs/en/build-with-claude/streaming 

Dhaouadi, M., Spencer, K. M. B., Varnum, M. H., Grubb, A. M., & Famelis, M. (2021). 

Towards a Generic Method for Articulating Design-time Uncertainty. The Journal of 

Object Technology, 20(3). https://doi.org/10.5381/jot.2021.20.3.a3 

Esparza-Peidro, J., Muñoz-Escoí, F. D., & Bernabéu-Aubán, J. M. (2024). Modeling 

microservice architectures. The Journal of Systems and Software, 213, 112041. 

https://doi.org/10.1016/j.jss.2024.112041 

Farshidi, S., Jansen, S., & van der Werf, J. M. (2020). Capturing software architecture 

knowledge for pattern-driven design. Journal of Systems and Software, 169, 110714. 

https://doi.org/10.1016/j.jss.2020.110714 

about:blank
https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
https://doi.org/10.48550/arxiv.2308.08061
https://doi.org/10.48550/arxiv.2308.08061
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html
https://doi.org/10.36948/ijfmr.2024.v06i02.21600
https://doi.org/10.36948/ijfmr.2024.v06i02.21600
https://doi.org/10.36948/ijfmr.2024.v06i02.21600
https://doi.org/10.1016/j.scico.2023.102978
https://doi.org/10.1016/j.scico.2023.102978
https://doi.org/10.1016/j.scico.2023.102978
https://platform.claude.com/docs/en/build-with-claude/streaming
https://platform.claude.com/docs/en/build-with-claude/streaming
https://platform.claude.com/docs/en/build-with-claude/streaming
https://doi.org/10.5381/jot.2021.20.3.a3
https://doi.org/10.5381/jot.2021.20.3.a3
https://doi.org/10.1016/j.jss.2024.112041
https://doi.org/10.1016/j.jss.2024.112041
https://doi.org/10.1016/j.jss.2024.112041
https://doi.org/10.1016/j.jss.2020.110714
https://doi.org/10.1016/j.jss.2020.110714
https://doi.org/10.1016/j.jss.2020.110714


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
13 

FastAPI. (n.d.). Background Tasks. FastAPI. Retrieved December 8, 2025, from 

https://fastapi.tiangolo.com/tutorial/background-tasks/ 

Ghorbian, M., & Ghobaei-Arani, M. (2025). Serverless Computing: Architecture, Concepts, 

and Applications. ArXiv. https://doi.org/10.48550/arxiv.2501.09831 

Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent, available, 

partition-tolerant web services. ACM SIGACT News, 33(2), 51. 

https://doi.org/10.1145/564585.564601 

GitHub. (n.d.). llama3. GitHub. Retrieved December 9, 2025, from https://github.com/meta-

llama/llama3/blob/main/MODEL_CARD.md 

Han, T., Fang, C., Zhao, S., Ma, S., Chen, Z., & Wang, Z. (2024). Token-Budget-Aware LLM 

Reasoning. ArXiv. https://doi.org/10.48550/arxiv.2412.18547 

Klesel, M., & Wittmann, H. F. (2025). Retrieval-Augmented Generation (RAG). Business & 

Information Systems Engineering, 67, 551–561. https://doi.org/10.1007/s12599-025-

00945-3 

LangСhain. (2024). LangChain State of AI Agents Report. LangСhain. 

https://www.langchain.com/stateofaiagents 

Legashev, L., Shukhman, A., Badikov, V., & Kurynov, V. (2025). Using Large Language 

Models for Goal-Oriented Dialogue Systems. Applied Sciences, 15(9), 4687. 

https://doi.org/10.3390/app15094687 

Li, B., Peng, X., Xiang, Q., Wang, H., Xie, T., Sun, J., & Liu, X. (2021). Enjoy your 

observability: an industrial survey of microservice tracing and analysis. Empirical 

Software Engineering, 27(1), 5507. https://doi.org/10.1007/s10664-021-10063-9 

Lytra, I., Carrillo, C., Capilla, R., & Zdun, U. (2019). Quality attributes use in architecture 

design decision methods: research and practice. Computing, 102(2), 551–572. 

https://doi.org/10.1007/s00607-019-00758-9 

Microsoft Learn. (2025, August 21). Azure OpenAI in Azure AI Foundry Models Quotas and 

Limits. Microsoft Learn. https://learn.microsoft.com/en-us/azure/ai-

foundry/openai/quotas-limits?tabs=REST 

Mordor Intelligence. (2025). Retrieval Augmented Generation Market Size, Share & 2030 

Growth Trends Report. Mordor Intelligence. 

https://www.mordorintelligence.com/industry-reports/retrieval-augmented-generation-

market 

OpenAI. (2024, July 18). GPT-4o mini: advancing cost-efficient intelligence. OpenAI. 

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/ 

OpenAI. (2025a). API Pricing. OpenAI. https://openai.com/api/pricing/ 

OpenAI. (2025b). Introducing GPT-4.1 in the API. OpenAI. https://openai.com/index/gpt-4-1/ 

Polan, S. (2025). Retrieval-Augmented Generation: Architecture, Techniques, and 

Evaluations. Journal of Modern Technology and Engineering, 10(1), 42–56. 

https://doi.org/10.62476/jmte.10142 

Söylemez, M., Tekinerdogan, B., & Kolukısa Tarhan, A. (2022). Challenges and Solution 

Directions of Microservice Architectures: A Systematic Literature Review. Applied 

Sciences, 12(11), 5507. https://doi.org/10.3390/app12115507 

Stackoverflow. (2025). 2025 Stack Overflow Developer Survey. Stackoverflow. 

https://survey.stackoverflow.co/2025/ 

TechSci Research. (2024). Microservices Architecture Market By Size, Share, and Forecast 

2029. TechSci Research. https://www.techsciresearch.com/report/microservices-

architecture-market/25049.html 

The Business Research Company. (2025). Microservices Architecture Global Market Report 

2025. The Business Research Company. 

http://www.ejsit-journal.com/
https://fastapi.tiangolo.com/tutorial/background-tasks/
https://fastapi.tiangolo.com/tutorial/background-tasks/
https://fastapi.tiangolo.com/tutorial/background-tasks/
https://doi.org/10.48550/arxiv.2501.09831
https://doi.org/10.48550/arxiv.2501.09831
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.48550/arxiv.2412.18547
https://doi.org/10.48550/arxiv.2412.18547
https://doi.org/10.1007/s12599-025-00945-3
https://doi.org/10.1007/s12599-025-00945-3
https://doi.org/10.1007/s12599-025-00945-3
https://www.langchain.com/stateofaiagents
https://www.langchain.com/stateofaiagents
https://www.langchain.com/stateofaiagents
https://doi.org/10.3390/app15094687
https://doi.org/10.3390/app15094687
https://doi.org/10.3390/app15094687
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1007/s00607-019-00758-9
https://doi.org/10.1007/s00607-019-00758-9
https://doi.org/10.1007/s00607-019-00758-9
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/quotas-limits?tabs=REST
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/quotas-limits?tabs=REST
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/quotas-limits?tabs=REST
https://www.mordorintelligence.com/industry-reports/retrieval-augmented-generation-market
https://www.mordorintelligence.com/industry-reports/retrieval-augmented-generation-market
https://www.mordorintelligence.com/industry-reports/retrieval-augmented-generation-market
https://www.mordorintelligence.com/industry-reports/retrieval-augmented-generation-market
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/api/pricing/
https://openai.com/api/pricing/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://doi.org/10.62476/jmte.10142
https://doi.org/10.62476/jmte.10142
https://doi.org/10.62476/jmte.10142
https://doi.org/10.3390/app12115507
https://doi.org/10.3390/app12115507
https://survey.stackoverflow.co/2025/
https://survey.stackoverflow.co/2025/
https://survey.stackoverflow.co/2025/
https://www.techsciresearch.com/report/microservices-architecture-market/25049.html
https://www.techsciresearch.com/report/microservices-architecture-market/25049.html
https://www.techsciresearch.com/report/microservices-architecture-market/25049.html
https://www.thebusinessresearchcompany.com/report/microservices-architecture-global-market-report


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
14 

https://www.thebusinessresearchcompany.com/report/microservices-architecture-

global-market-report 

Toosi, A. N., Javadi, B., Iosup, A., Smirni, E., & Dustdar, S. (2024). Serverless Computing for 

Next-generation Application Development. Future Generation Computer Systems, 164, 

107573. https://doi.org/10.1016/j.future.2024.107573 

Wan, Z., Zhang, Y., Xia, X., Yi, J., & Lo, D. (2023). Software Architecture in Practice: 

Challenges and Opportunities. Proceedings of the 31st ACM Joint European Software 

Engineering Conference and Symposium on the Foundations of Software Engineering. 

https://doi.org/10.1145/3611643.3616367 

Waseem, M., Liang, P., Shahin, M., Di Salle, A., & Márquez, G. (2021). Design, monitoring, 

and testing of microservices systems: The practitioners’ perspective. Journal of Systems 

and Software, 182, 111061. https://doi.org/10.1016/j.jss.2021.111061 

 

 

about:blank
https://www.thebusinessresearchcompany.com/report/microservices-architecture-global-market-report
https://www.thebusinessresearchcompany.com/report/microservices-architecture-global-market-report
https://doi.org/10.1016/j.future.2024.107573
https://doi.org/10.1016/j.future.2024.107573
https://doi.org/10.1145/3611643.3616367
https://doi.org/10.1145/3611643.3616367
https://doi.org/10.1145/3611643.3616367
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1016/j.jss.2021.111061

