
 European Journal of Science, Innovation and Technology 

 ISSN: 2786-4936    

 www.ejsit-journal.com 

 

   

 

  
Volume 5 | Number 1 | 2025 

 
250 

EJSIT 

Long Term Electricity Demand Forecasting in Nigeria 
 

E. Efekemo*, E. G. Saturday, J. C. Ofodu 

Department of Mechanical Engineering,  

University of Port Harcourt,  

PMB 5323, Choba, Port Harcourt, Rivers State, Nigeria 

 

ABSTRACT 

This study focuses on forecasting long-term electricity demand in Nigeria using three distinct 

methods: Nonlinear Autoregressive with Exogenous Input Neural Network (NARX), Support 

Vector Regression (SVR), and Exponential Smoothing - Holt Winters (ES-HW). Over eight 

years of data from the National Control Centre were utilized to develop and compare these 

models. The ES-HW model, despite its reliance on limited input data, demonstrated ability to 

replicate the seasonal patterns and trends in electricity demand, even though it resulted in a 

higher relative root mean square error (RRMSE) than the other method. While SVR showed 

slightly better performance metrics, ES-HW provided a more accurate depiction of demand 

fluctuations over time. The study identified key insights, such as the critical impact of data 

availability on forecasting accuracy and the comparative effectiveness of different modeling 

approaches. The research highlights the challenges posed by limited historical data in the 

Nigerian electricity sector, which constrained the accuracy and scope of the forecasts. 

Overall, this work contributes valuable knowledge to energy modeling and policy-making, 

offering a foundation for sustainable energy planning in Nigeria. 

 

Keywords: electricity demand, forecasting, NARX, SVM 

 

INTRODUCTION 

Electricity plays an important role in our world today. Electricity is a secondary energy 

source because it depends on other energy sources (renewable and non-renewable). 

Electricity is a cleaner, more reliable, easier to transport more efficient energy source and can 

be easily adapted to suit different applications. Electricity demand forecasting is the method 

whereby the demand for electricity in  future timeframe is estimated  by making use of past 

electricity demand data and some of the factors which affect electricity demand (Atanane, 

Benabbou, & El Ouafi, 2023). The timeframe of the forecast plays a role in how the factors 

impacting electricity demand are selected thereby influencing the outcome of the forecast. 

For example, for short term electricity demand forecasting, human hourly temperature, 

working hours of the population in the location can be used, while for long term electricity 

demand forecasting factors like weather, population growth, amount of rainfall can be used. 

Electricity demand forecasting is divided into various categories determined by the timeframe 

of the forecast, referred to as forecasting ranges (Nti et al., 2020). Achieving accurate forecast 

can be crucial for the planning and management of electric power systems, facilitating 

maintenance, scheduling, system expansion, and other key activities. The specific objective 

of the forecast dictates the timeframe over which it was conducted. These factors are selected 

based on the forecast's scope and nature. Research has explored the relationship between 

these factors and electricity generation, revealing a strong correlation between ambient 

temperature and hourly electricity consumption, employing methodologies like Pearson’s 

correlation and Spearman’s rank correlation to demonstrate these relationships (Dedinec, 
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2016). Nigeria has faced significant power supply issues over the years, affecting the quality 

of life for its citizens. These challenges include insufficient power plants, technical problems, 

gas supply shortages, lack of government policies, poor planning, and political issues, among 

others. The country's electricity industry relies on a mix of energy sources, including thermal 

plants and renewable resources like hydro, solar, and wind. Due to this diverse energy mix, 

multiple factors influence electricity generation in Nigeria. Accurate electricity demand 

forecasting is crucial for planning future electricity supply in the country.  

Ozveren and King (2007) carried out a study on short-term electricity demand 

prediction for South Sulawesi Island, Indonesia, using multiple linear regression analysis and 

collecting data across both rainy and dry seasons. Their findings indicated multiple sources of 

error, including modeling mistakes, system disturbances, and inaccuracies in temperature 

forecasting. According to Hsu and Lin (2002), a successful forecast exhibits Mean Absolute 

Percentage Error (MAPE) below 10%. The direct approach, leveraging actual past data, 

outperformed the iterative method, yielding a MAPE of 3.2% compared to 5.36% for the 

iterative approach. Granger causality tests and co-integration analyses are two methods used 

to evaluate correlation between time series datasets. Granger causality tests ascertain whether 

one variable in a linear relation is dependent on another variable, determining if the 

relationship is unidirectional, bidirectional, or nonexistent. Conversely, co-integration 

analyses assess causal relationships among variables by examining if trends in a group of 

variables are shared by the series (Stern, 2004). Yukseltan, Yucekaya, and Bilge (2017) 

presented a novel approach to forecasting electricity demand on an hourly basis across 

annual, weekly, and daily horizons without relying on climatic or econometric data. Instead, 

the method utilizes a linear model that incorporates the harmonics of daily, weekly, and 

seasonal variations, alongside the modulation of diurnal periodic variations by seasonal 

harmonics. Applied to the Turkish electricity market for 2012–2014, the model achieved a 

MAPE of 3% for daily and weekly demand forecasts.  

Şişman (2017) sought to forecast future electricity demand in Turkey by comparing the 

accuracy of Provide the full meaning (ARIMA) and grey prediction (GP) models. The 

ARIMA and GP models demonstrated lower error rates (4.9% and 5.6%, respectively) 

compared to Provide the full meaning (MAED) (14.8%), indicating their superior accuracy 

for long-term forecasts. Andoh et al. (2021) employed the SARIMA model (Seasonal Auto-

Regressive Integrated Moving Average) to predict electricity demand in the western region of 

Ghana. Mirasgedis et al. (2006) conducted a study on electricity demand forecasting in 

Greece, employing two multiple regression models incorporating autoregressive structures. 

Their models demonstrated high accuracy in forecasting over a one-year period and yielded 

error rates of 4.6% and 2.8%, respectively. Taylor and Buizza (2003) examined the role of 

weather forecasts in electricity demand forecasting models, focusing on lead times ranging 

from 1 to 10 days. Their approach offered an enhanced method for predicting electricity 

demand by incorporating a range of weather scenarios. Bedi and Toshniwal (2019) proposed 

a deep learning framework to forecast electricity demand by considering long-term historical 

dependencies. The proposed method was tested on electricity consumption data from the 

Union Territory of Chandigarh, India, and its performance was evaluated against Artificial 

Neural Network (ANN), Recurrent Neural Network (RNN), and Support Vector Regression 

(SVR) models, demonstrating its effectiveness and applicability. Abdulsalama and Babatunde 

(2019) proposed an Artificial Neural Network based method for forecasting electrical energy 

demand, using Lagos state, Nigeria, as a case study. Their results highlighted the potential of 

ANN in effectively handling the complexities associated with non-linear data in electrical 

energy demand forecasting. 

Mati et al. (2009) in a study highlighted the importance of demand forecasts for 

optimizing power system operations and minimizing costs, even during local failures. Their 
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study noted the limitations of time series models for long-term forecasting due to 

uncertainties in future trends. It recommended combining time series models with end-use 

modeling strategies to overcome these limitations. Okakwu et al. (2019) carried out a study 

which focused on the complexities of the Nigerian power sector and the importance of 

accurate electricity demand forecasting due to industry deregulation, fluctuating demand, and 

population growth. Their study concluded with a recommendation for future research to 

optimize the Harvey model for even better prediction accuracy. Ezennaya et al. (2014) 

performed a study addressing the critical importance of accurately forecasting electricity 

demand in Nigeria due to the country's increasing reliance on stable electric supply for 

agriculture, industry, and household comfort. This research focused on predicting Nigeria's 

electricity demand from 2013 to 2030, aligned with the nation's Vision 2025 goals, using 

Time Series Analysis based on historical load data. Ebakumo (2021) performed a study on 

forecasting Nigeria's electricity demand from 2020 to 2040, using time series analysis based 

on historical load data. Their average mean square error, indicating the forecast's accuracy, 

was approximately 0.52%.  

Ezenugu, Nwokonko, and Markson (2017) conducted a statistical analysis of residential 

electricity demand in Nigeria using annual data from 2006 to 2014 resulting in quadratic 

regression model with higher coefficient of determination (93.87) and a lower Root Mean 

Square Error (RMSE) of 52.77, compared to the multiple regression model's coefficient of 

determination of 93.50 and RMSE of 53.16. Idoniboyeobu, Ogunsakin, and Wokoma (2018) 

studied long-term electric power load forecasting for Nigeria, researchers projected a 20-year 

period from 2013 to 2032 using a modified exponential regression model implemented on the 

Matlab platform. In their study, the modified exponential regression model provided the most 

accurate results, with a percentage error of 1.37%, as opposed to 1.67% for the existing 

model. Mir et al. (2020) investigated the growing global electricity demand and the 

associated uncertainties, emphasizing the necessity for accurate load forecasting techniques 

to inform business and policy decisions identifying research gaps and recommended areas for 

further exploration, highlighting the need for region-specific forecasting approaches to better 

address the complexities of electricity demand in diverse economic contexts. Vasquez, 

Rodriguez, and Dayupay (2020) conducted a study focusing on predicting energy 

consumption within the Puerto Rico distribution system from 2019 to 2028, employing multi 

linear regression. Their energy forecast for 2028 projected consumption at 566,078,019.1 

kWh. The regression outcomes exhibited error rates of 0.995 and 0.991, with a mean average 

percentage error of 0.74%, indicating the model's strong alignment with the dataset. 

Saravanan, Kannan, and Thangaraj (2012) investigated electricity demand forecasting for 

India over a 19-year period (2012-2030 resulting in principal component artificial neural 

network (PC-ANN) achieving a MAPE of 0.430%, outperforming Principal Component 

Regression (PCR) at 0.597% and traditional regression analysis at 0.969%.  

Various types of exponential smoothing exist, including first-order, second-order, 

higher-order exponential smoothing, and the Holt-Winters method (Montgomery, Jennings, 

& Kulahci, 2015). Bindiu, Chindris, and Pop (2009) conducted a study on a fittings 

manufacturer in Cluj-Napoca, aiming to forecast day-ahead load using the Holt-Winters 

method. Their study modeled load forecasts for an industrial client with a predictable 

operational cycle, leading to repeated load consumption similar to historical data. While the 

mean square error (MSE) yielded satisfactory results within acceptable limits, MAPE values 

exceeded acceptable thresholds, indicating insufficient accuracy for dependable forecasting. 

Contreras-Salinas et al. (2020) applied Holt’s method to predict electricity demand in 

Colombia, considering parameters such as energy consumption, per capita GDP, and 

purchasing power parity, which directly influence energy demand. Using data spanning 2007 

to 2017 from the national interconnected system (NIS) and World Bank, they forecasted 
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energy consumption for 2018, 2019, and 2020, showing a slight 0.1% increase if per capita 

values remained between 14880 to 15525. Abd Jalil, Ahmad, and Mohamed (2013) 

conducted a short-term electricity demand forecast using one-year data from Malaysia. They 

applied Standard Holt-Winters Exponential Smoothing, HWT Exponential Smoothing, and 

the Modified Holt-Winters method, demonstrating the superiority of the HWT exponential 

smoothing method given the available data. Nafil et al. (2020) employed different forecasting 

methods, including ARIMA, temporal causality modeling, and exponential smoothing, to 

forecast energy demand in Morocco for 2020. Al-Farttoosi and Mansouri (2019) predicted 

electricity consumption in Misan, Iraq, by analyzing monthly consumption data from 2009 to 

2019. They utilized Box-Jenkins methods, exponential smoothing, and state-space classes, 

with model evaluation identifying the SARIMA (0,1,1) model as the most suitable for the 

dataset. 

Erdogdu (2007) conducted a study on electricity demand in Turkey, employing co-

integration analysis and ARIMA modeling for estimation and forecasting. Their results 

indicated electricity demand growth from 2005 to 2014 at an annual rate of 3.3%, with 

limited customer response to electricity price changes and income fluctuations. Almeshaiei 

and Soltan (2011) introduced a pragmatic methodology for constructing Electric Power Load 

Forecasting (EPLF) models, which is essential for planning electricity production and 

network operations. Akay and Atak (2007) addressed the challenge of electricity 

configuration planning and estimation in Turkey, given the country's increasing energy 

demand and uncertain economic structure. The Model of Analysis of Energy Demand 

(MAED), officially used by the Turkish Ministry of Energy and Natural Resources (MENR), 

is the current method for energy planning. Dudek (2015) explored a method utilizing the 

Random Forest model for short-term electricity load forecasting. This technique, along with 

Artificial Neural Networks, exhibited superior performance compared to other methods like 

ARIMA and exponential smoothing. Aprillia, Yang, and Huang (2019) investigated a novel 

approach termed Whale Optimization Method, Discrete Wavelet Transforms, and Multiple 

Linear Regression (WOA-DWT-MLR) for high-accuracy short-term load forecasting. The 

method combines whale optimization algorithm (WOA) with discrete wavelet transformation 

and multiple linear regression, showcasing improved accuracy compared to traditional 

methods. Additionally, fuzzy logic methods such as Interval Type-2 Fuzzy Logic, as 

proposed by Dharma, Robandi, and Purnomo (2011), have been effective in short-term load 

forecasting. Self-Organizing Maps (SOM), introduced by Hernández et al. (2014), have also 

shown promise in providing accurate short-term load forecasts.  

 

METHODOLOGY 

Different methods can be used for carrying out electricity demand forecasting ranging 

from soft computational methods to traditional forecasting methods. Three methods were 

used to carry out long term electricity demand forecast in this work; Nonlinear 

Autoregressive with exogenous input (NARX), Support vector machines (SVM) and 

exponential smoothening Holtz Winters methods (ES-HW). Data for the study was collected 

from National control center (NCC) from the period between January 2015 to December 

2022. There are many factors affecting the outcome of a long-term electricity demand 

forecast. The factors which will be considered in developing the forecasting models are 

population, days of rainfall in a month and average temperature in a month collected for the 

period between January 2015 to December 2022 (Nigeria Climate, 2024). Two methods were 

used to measure the error for the different forecasting models developed; relative root mean 

square error (RRMSE) and relative mean absolute error (RMAE). 
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Nonlinear Autoregressive with Exogenous Inputs 

Nonlinear autoregressive with exogenous inputs (NARX) is a type neural network 

known as a recurrent dynamic network. It consists of connections which encloses several 

layers of networks having feedback connections. The structure of a NARX is made up of 

three layers; input layer, hidden layer and an output layer. The NARX is suited for this study 

due to its ability to model nonlinear dynamic systems.  

The NARX network is expressed mathematically in Equation (1), 

𝑦(𝑡) = 𝑓 (𝑥(𝑡 − 1), 𝑥(𝑡 − 2) … 𝑥(𝑡 − 𝐷𝑥), 𝑦(𝑡 − 1), 𝑦(𝑡 − 2) … 𝑦(𝑡 − 𝐷𝑦)) (1) 

Where f represents the nonlinear function which is approximated by the multi-layer 

perceptron (Sum, Kan, & Young, 1999). x(t) and y(t) represent the input and output of the 

neural network at different time steps t respectively. The predicted data y(t) is regressed using 

the available target input values. 

The Non-linear autoregressive with external input neural network (NARX) is built with 

2 input delays, 2 feedback delays and 14 hidden layers. Historical data was split into 75% 

train data, 10% validation data and 15% test data. Figure 1 displays the NARX network 

showing the two hidden layers in the neural network model which was used to carry out the 

electricity demand forecast. 
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Figure 1: Two layered NARX neutral network model 

 

The first and second hidden layers is made up of several neurons M in the first layer 

and N in the second layer which can be tweaked during training of the model until a 

satisfactory performance is attained by the model which minimizes the error between the 

output and the electricity consumption data. To train the network, Levenberg-Marquardt 

Method (LMA) is applied. LMA is an algorithm which is used to find the minimum function 

in a space of parameter by first picking a region of an objective function and modeling it, 

then another function such as a quadratic function and compared. Once an adequate fit is 

found, the region is expanded (Farber, 2011). Figure 2 shows a flow chart for the NARX 

algorithm. 
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Figure 2: Flowchart for NARX neural network method 

 

Support Vector Machine  

Support vector machines (SVM) is a type of supervised learning which is based on 

statistical learning which can be resolved for classification and regression problems.  This can 

be applied to time series prediction as regression analysis. When it a support vector machine 

is used to solve a regression problem, it is known as support vector regression (SVR). 

SVM’s are used to find a hyperplane (a separating line) between two different classes 

of data. After the hyperplane is identified, the SVM algorithm finds the points which are 

closest to the lines from both classes of data which are called support vectors. The distances 

in between the two support vectors are known as a margin. The purpose of an SVM is to 

maximize this distance between the support vectors. The hyperplane which has the maximum 

margin is known as the optimal hyperplane.  

For a regression problem, the ɛ-tube is equivalent to the margin in a classification 

problem as shown in Figure 3. While the support vectors represent data that are at the outside 

of the ɛ-tube (Rodriguez-Perez & Bajorath, 2022). 

Regression problems can be linear or non-linear and SVR can be applied to solving 

both forms of problems. A brief introduction of SVR is given below. Figure 3 shows a 

support vector regression for linear equations. 
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Figure 3: Linear Support Vector Regression (SVR) showing errors 

 

Given a dataset with training data ((𝑥1, 𝑦1)… (𝑥𝑙 , 𝑦𝑙), SVR is used to solve the 

optimization problem where 𝑥𝑖  represents the input vectors and 𝑦𝑖 are the output values of 𝑥𝑖 

(Chen, Chang, & Lin, 2004).  

                                       (𝑚𝑖𝑛𝜔,𝑏,𝜉,𝜉∗   
1

2
𝜔𝑇𝜔 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗))𝑙
𝑖=1     (2) 

Subject to                                  

                                        𝑦𝑖 − (𝜔𝑇𝜙(𝑥𝑖) + 𝑏)  ≤ 𝜖 + 𝜉𝑖 ,    (3) 

                                        (𝜔𝑇𝜙(𝑥𝑖) + 𝑏) − 𝑦𝑖  ≤ 𝜖 + 𝜉𝑖
∗, (4) 

                                        𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑙 (5) 

From equation (2) above, 𝑥𝑖 is mapped by the function 𝜙 to a higher dimensional space, 

𝜉𝑖  is the upper training error while 𝜉𝑖
∗ is the lower error subject to |𝑦𝑖 − (𝜔𝑇𝜙(𝑥𝑖) + 𝑏)| ≤ 𝜖. 

𝐶 is the quality of cost error, 𝜖 the width of the tube and 𝜙 is the mapping function. 

For a non-linear SVR, a kernel is used to select the type of hyperplane which is used in 

separating the data. For our studies, a Gaussian RBF kernel is used. 

                                        𝑘(𝑥𝑖, 𝑥𝑗) = exp (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 ) (6) 

Where 𝜎 represents the standard deviation. 

 

Exponential Smoothing 

Exponential smoothing is a method used to predict a future load using the load from the 

past. The procedure for exponential smoothing puts into consideration recent experiences in 

its future forecasts by assigning exponentially decreasing weights to more recent 

observations. The model is suitable for univariate time series data where the future data is a 

weighted linear sum of past data. Exponential smoothing works on prior assumptions like 

seasonality and trend in the time series which are defined during modeling. Seasonality refers 

to a periodicity while trend is a repeated pattern within periods. 

There are different exponential smoothing methods single, double and triple 

exponential smoothing, however their applications depend on the nature of dataset available. 
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Simple exponential smoothing assumes the data fluctuates around a mean and it is applied 

usually for short range forecasting. Double exponential smoothing can be used in a case 

where there is an identifiable trend in the time series. This model considers the trends by 

analyzing periods in the data set and applying a smoothed estimated of the average growth by 

each period. Triple exponential smoothing applicable when the time series developed from 

the dataset exhibits both trend and seasonality. There are two types of seasonality a dataset 

can exhibit: additive and multiplicative. 

Holts-Winters multiplicative method is an extension of the Holts exponential 

smoothing method which considers seasonality. This method expresses the seasonal 

component in percentages and the series is divided through to create the seasonal component 

(Emmanuel, Adebanji, & Labeodan, 2014). 

Equation (7) is the model equation for Holt winters multiplicative method. 

 𝑦𝑡 = (𝑏1 + 𝑏2𝑡)𝑆𝑡 + 𝜖𝑡     (7) 

Where 𝑏1 is known as the permanent component or base signal, 𝑏2 is the linear trend 

component. 𝑆𝑡 is the multiplicative seasonal factor and 𝜖𝑡 is the random error component. 

L represents the length of the periods. The seasonality factor is therefore the sum of the 

length of the seasons i.e. 
∑   

1≤𝑡≤𝐿 𝑆𝑡 = 𝐿      (8) 

The forecasting equations used for Holts winters multiplicative methods are shown in 

equations (9) to (11). 

Overall smoothing is represented by 𝑅𝑡 and defined by Equation (9) below. 

𝑅𝑡 = 𝛼
𝑦𝑡

𝑠𝑡−𝐿
+ (1 − 𝛼) ∗ (𝑅𝑡−1 

+ 𝐺𝑡−1)   (9) 

Where 𝛼 is a smoothing constant and varies between 0< 𝛼<1. Dividing 𝑦𝑡 by 𝑠𝑡−𝐿  de-

seasonalizes the data such that trend factor and previous value of the permanent component is 

updated in 𝑅𝑡. 

Smoothing of the trend factor is the second equation in the model represented by 𝐺𝑡. 

𝐺𝑡 = 𝛽(𝑆𝑡 − 𝑆𝑡−1) + (1 − 𝛽) ∗ 𝐺𝑡−1   (10) 

Where 𝛽 is a smoothing constant that varies between 0 and 1.  

Smoothing of the seasonal index is the final equation represented by 𝑆𝑡 in Equation (11) 

𝑆𝑡 = 𝛾𝑒𝑠
𝑦𝑡

𝑆𝑡
+ (1 − 𝛾𝑒𝑠 )𝑠𝑡−𝐿     (11) 

Where 𝛾𝑒𝑠 is the third smoothing constant varying from 0 to 1. yt. represents the most recent 

observed seasonal factor. 

To carry out a forecast for the next period, the three equations are applied. Equation 

(12) is the expression for forecasting the next period.  

𝑦𝑡 = (𝑅𝑡−1 + 𝐺𝑡−1) ∗ 𝑆𝑡−𝐿     (12) 

For a multi-step ahead forecast, the value of the forecast T periods is given by 

𝑦𝑡+𝑇 = (𝑅𝑡−1 + 𝑇 ∗ 𝐺𝑡−1) ∗ 𝑆𝑡+𝑇−𝐿    (13) 

The seasonal factors were initialized using historical data. However, to estimate the 

initial values of the models, the following equations (14) to (16) are used. 

𝐺0 = (𝑦𝑚 − 𝑦1)/(𝑚 − 1)𝐿     (14) 

𝑅0 = 𝑥1 −
𝐿

2
𝐺0      (15) 

𝑆𝑡 =
𝑥𝑡

𝑥𝑖−[
𝐿+1

2
−𝑗]𝐺0

      (16) 

Where 𝑥𝑖 is the average for the season which corresponds to the index t. j represents the 

position of the period t within the season. J=1, 2, …. mL denotes the average number of the 

observations made during the jth season. 
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Holts-Winters multiplicative method is an extension of the Holts exponential 

smoothing method which considers seasonality.  

The input data (Nigerian population) was prepared by scaling process before it is 

applied to the SVR model. Data scaling is a process whereby the values in a data set are 

rescaled to fit into a certain range. In Min-max scaling, the dataset is rescaled to fit into a 

range of 0 – 1. 

After successful development of the forecasting models, the performance of the models 

was tested using two standard performance measurement methods; relative root mean square 

error (RRMSE) and relative mean absolute error (RMAE) methods. Equations (17) and (18) 

are expresses mathematical formula for RRMSE. 

𝑅𝑀𝑆𝐸 = √∑ (
(𝐴𝑖−𝐹𝑖)2

2
)𝑛

𝑖=1      (17) 

𝑅𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸 𝑥 
100%

𝐹𝑎𝑣𝑔
     (18) 

Equation (19) represents formula for RMAE: 

𝑅𝑀𝐴𝐸 =
∑ |A𝑖−F𝑖|𝑛

𝑖=1

𝑛
  𝑥 

100%

𝐹𝑎𝑣𝑔
     (19) 

Where 𝐴𝑖 represents the actual data, 𝐹𝑖 represents the predicted data and 𝐹𝑎𝑣𝑔 represents the 

average of predicted data. 

 

RESULTS AND DISCUSSION 

The results from the study are presented in this section. The training error and fitting 

diagram when developing the NARX is presented in Figure 4 and Figure 5.   

Forecasted electricity demand and actual historical electricity demand is plotted in a 

line chart with  Y-axis representing electricity demand and x-axis representing time-steps 

(months) as shown in Figure 6. Forecasted electricity demand from January 2023 to 

December 2050 is shown in Figure 7.  

 

 
Figure 4:  NARXNET training error using Mean Squared Error (MSE) 
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Figure 5: NARXNET fitting diagrams 

 

 
Figure 6: Actual historical monthly electricity demand versus forecasted electricity 

demand using NARX neural network 
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Figure 7: Actual historical monthly electricity demand versus forecasted electricity 

demand using Support Vector Regression 

 

 
Figure 8: Actual historical monthly electricity demand versus forecasted electricity 

demand using exponential smoothing Holtz winters method 
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necessarily correlate to seasonality. The result from the NARX neural network, can be seen in 

figure 6 shown in red dotted lines while the solid black line is the actual historical electricity 

demand time series chart. From physically assessing the plot, it can be deduced that the 

neural network was able to closely follow the actual historical data points. From the 

performance evaluation done on the NARX neural network model, RMAE resulted in 9.6% 

while RRMSE resulted in 12.6%. 
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For the Support vector regression method different kernel functions and cross 

validation folds were used. Cross validation folds are used to partition the dataset in a bid to 

prevent against overfitting while the kernel functions are what transforms input data into the 

required processing data. The best model resulted with the use of Linear kernel function. 

Cross validation did not have much effect on the forecasted results. Similar to the NARX 

model, monthly population, monthly days of rainfall and monthly average temperature was 

used as the input data while the output data was historical electricity demand. From the 

performance evaluation done on the SVR model, RMAE resulted in 8.5% while RRMSE 

resulted in 13.0%. A review of Figure 7 shows that the forecasted electricity demand from the 

SVR model shown by red dotted lines replicated the trend of the historical data. However, it 

was unable to closely match the points from the historical data.  

Finally, the performance evaluation done on the ES-HW model, resulted in RMAE of 

9.7% and RRMSE resulted in 13.6%. A plot of the actual historical data and results of 

exponential smoothing – Holtz Winters (ES-HW) is shown in Figure 8. Unlike the NARX 

and SVR method, ES-HW requires just one independent factor and an output in developing 

the model. In this case, population was used as the independent factor and the output was 

historical electricity demand dataset. ES-HW method takes into consideration seasonality and 

trend when developing its model.  

A comparison of the accuracy of the different forecasting models is shown in Table 1. 

From the three forecasting models, NARX performed best when RRMSE was used while 

SVR performed best when RMAE was used. 

 

Table 1: Comparison of errors from different models 

S/N Performance NARX (%) SVR (%) ES-HW (%)  

1 RMAE 9.6 8.5 9.7 

2 RRMSE 12.6 13.0 13.6 

 

The 3 models were used to carry out a long term electricity demand forecast from 2023 

until 2050. The results obtained very similar to each other. Figures 9 to 11 show  plots of the 

forecasted electricity demand between 2023 to 2050. 

 

 
Figure 9: Forecasted energy electricity from January 2023 to December 2030 using 

NARX-neural network 
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Figure 10: Forecasted electricity demand from January 2023 to December 2050 using 

SVR method 

 

 
Figure 11: Predicted electricity demand from January 2023 to December 2050 using 

exponential smoothing - Holtz winters (ES-HW) method 
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predict far into the future. Figure 10 shows that the forecast for SVR model replicated the 

trend and was not successful in tracing the peaks and troughs observed in the actual historical 

time series. The long term forecasted electricity demand from the ES-HW model was plotted 

in a chart shown in Figure 11. The time series chart produced from the forecast has an 

increasing trend and exhibits seasonality which is consistent with the input historical 

electricity demand data.  
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CONCLUSIONS 

Electricity generation data collected for a period of eight (8) years representing 96 

months was collected from National Control Center to forecast a long term electricity 

demand for Nigeria. Three different methods were used to build the forecasting models for 

long term electricity demand and the different models were subsequently compared. The 

methods are nonlinear autoregressive with exogenous input neural network Support vector 

regression and exponential smoothing – Holtz winters.  

Insufficient electricity demand data significantly affects the accuracy of different 

forecasting models. Among the different forecasting methods applied, the NARX performed 

least when applied for simulating long term electricity demand forecast. Although the model 

had the best performance when compared using RRMSE, it succeeded in forecasting only 

few months ahead successfully. This was due to the limited data available which was used in 

developing the model. Both SVR and ES-HW models had similar performance results 

however the ES-HW future electricity demand forecast over the long term period showed 

better dips and peaks which is a better replication of the actual historical electricity demand 

time series characteristics. The exponential smoothing Holtz winters model produced a 

RRMSE of 13.6%, the lowest error among the three-forecasting model. However, it produced 

the best forecast for long term future electricity demand. Electricity generation in Nigeria can 

benefit from electricity demand forecasting by application of the results in planning for future 

electricity needs.  
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