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ABSTRACT 

This work used advanced reinforcement learning (RL) techniques to enhance crude oil 

pipeline leakage detection systems to address the frequent occurrence of undetected or 

misidentified leaks, which can lead to significant financial losses and safety risks. The 

existing pipeline monitoring system's performance was analysed, identifying the detection 

accuracy and response time limitations. Reinforcement learning algorithms were then 

integrated to optimize the system's ability to detect leaks and minimize false positives. The 

RL model was trained to enhance its performance through iterative learning and feedback, 

ultimately improving its accuracy to 100% and increasing precision to 100%. This was 

achieved by adjusting detection thresholds and refining control actions based on real-time 

data. When the system detected a pressure drop from 55 psi to 36 psi, reinforcement control 

measures were successfully implemented to restore pressure to 55 psi. Additionally, a leakage 

was accurately located at 600 meters along the pipeline, allowing for targeted intervention. 

The results also demonstrated the impact of flow rate and pressure variations on detection 

performance, emphasizing the importance of dynamic and responsive control strategies.  The 

integration of RL techniques offers a significant advancement over traditional methods, 

providing a robust framework for managing pipeline integrity and ensuring environmental 

safety. This study sets a precedent for future developments in pipeline monitoring and 

management, advocating for the continuous incorporation of innovative technologies in 

maintaining infrastructure resilience. 

 

Keywords: Reinforcement Learning, Pipeline, Detection, Leakage, Control and Artificial 

Intelligence 

 

INTRODUCTION 

Crude oil pipelines are critical infrastructures for transporting oil across vast distances, 

but they are vulnerable to leaks due to various factors such as corrosion, operational errors, or 

external interference. Leaks in oil pipelines not only result in significant economic losses but 

also cause severe environmental damage (Masanobu et al, 2020). Early detection of these 

leaks is crucial to minimize their impact. Traditional monitoring systems often fall short in 

identifying small or gradual leaks. As the demand for more accurate and responsive pipeline 

monitoring systems increases, integrating advanced technologies becomes imperative. 

Reinforcement learning (RL), a branch of artificial intelligence, offers a promising solution 

for enhancing the capabilities of pipeline leak detection systems. Unlike conventional 

methods that rely on predefined rules or models, RL-based systems can learn from data and 

adapt their detection strategies over time. Through continuous interaction with the pipeline 

environment, an RL model can optimize its detection approach, recognizing leaks more 

quickly and accurately (Mathurine et al, 2017). This learning process allows the system to 

handle dynamic conditions and varying leak scenarios that might elude traditional monitoring 

methods. The application of reinforcement learning in pipeline leakage detection has the 

potential to revolutionize the oil industry by offering a more intelligent, adaptive, and cost-
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effective approach. By analyzing sensor data, pressure variations, and flow rates in real-time, 

an RL-based system can not only detect leaks with greater precision but also predict future 

leakages, thereby enabling proactive maintenance and reducing environmental risks 

(Meribout, 2011) This paper explores how reinforcement learning can be implemented to 

create an improved pipeline leak detection system, highlighting its advantages over existing 

technologies and addressing the challenges in its practical deployment. Through this 

approach, the oil industry can significantly enhance its ability to safeguard pipelines, protect 

the environment, and maintain operational efficiency. 

 

LITERATURE REVIEW 

According to (Ahmed et al, 2023), crude oil leakages and spills are common issues 

linked to pipeline failures in the midstream sector of the oil and gas industry. These problems 

are typically addressed using various leakage detection and localization techniques (LDTs), 

which include both traditional methods and more recent Internet of Things (IoT)-based 

systems that use wireless sensor networks (WSNs). While IoT-based systems have shown 

greater efficiency, they are prone to certain failures, such as high false alarm rates or single 

points of failure (SPOF) due to centralized architectures. To address these challenges, this 

work introduces a hybrid distributed leakage detection and localization technique 

(HyDiLLEch) that integrates multiple traditional LDTs. The technique is implemented in two 

forms: single-hop and double-hop. The evaluation focuses on resilience to SPOFs, detection 

and localization accuracy, and communication efficiency. Results show improved sensitivity 

in detecting and localizing leaks, with SPOFs mitigated by increasing the number of node-

detecting and localizing (NDL) sensors to four in the single-hop and six in the double-hop 

version. Additionally, the accuracy of leak localization improved to within 32 meters for 

nodes close to the leak points, while maintaining minimal communication overhead. 

The authors in (Oseni et al, 2023) introduced a first-order differential model for 

detecting leaks in crude oil pipelines which accurately identifies leaks by incorporating a leak 

factor (\ K_L \) along the axial direction. The model was simulated using the finite element 

method with COMSOL multi-physics software. It also integrates the transport equation for 

turbulent kinetic energy and its rate of change. Eigenvalues for both velocity and pressure are 

calculated and plotted over time for different pipeline segments. Stability is maintained when 

the eigenvalue is zero, whereas a leak is indicated if the eigenvalue for pressure or velocity 

falls below one. The study demonstrates that pressure measurements are more sensitive than 

velocity measurements for detecting leaks, with the sinusoidal waveform patterning leak 

behavior for velocity. 

According to (Korlapati et al, 2022), a pipeline burst or rupture leading to a leak can 

have a major environmental impact and damage the reputation of the pipeline operator. In 

recent years, oil and gas pipelines are increasingly expected to be equipped with leak 

detection systems to monitor operations and detect leaks. While current leak detection 

methods cannot entirely prevent leaks, they are essential in reducing the severity of their 

effects. Various leak detection techniques have been developed and tested. This paper 

reviews these methods, examines their strengths and weaknesses, and concludes by 

identifying future opportunities to enhance the reliability and adaptability of leak detection 

systems in subsea environments. 

 

Traditional Methods for Pipeline Leak Detection 

Detecting leaks in crude oil pipelines has always been a challenge due to the 

complexities of pipeline networks and environmental factors. Conventional approaches, such 

as pressure monitoring and flow rate analysis, have been widely used for decades. These 

systems detect leaks by identifying discrepancies between expected and actual flow or 
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pressure levels. While these methods are effective in identifying large leaks, they often fail to 

detect smaller leaks or slow leaks over extended periods (Milad et al, 2016). In addition to 

these, acoustic sensors have been employed, which detect sound waves generated by leaks. 

However, these systems are often vulnerable to environmental noise, leading to false alarms 

or missed detections. More recent techniques, such as fibre optic sensing, provide real-time 

detection by sensing changes in temperature or pressure along the pipeline. Although this 

method offers improved sensitivity, it involves high installation and maintenance costs, 

which limits its wide-scale adoption (Mohammed et al, 2014). 

 

Machine Learning Approaches in Leak Detection 

In recent years, machine learning (ML) has emerged as a tool to improve the accuracy 

of pipeline leak detection. By analyzing historical sensor data, machine learning models can 

detect anomalies that might indicate a leak. Supervised learning techniques, such as Random 

Forests and Neural Networks, rely on pre-labelled data to train models that distinguish 

between normal and abnormal pipeline behaviour. This allows for more refined leak 

detection compared to traditional methods (Mohamed et al, 2010). 

On the other hand, unsupervised learning algorithms, such as clustering or anomaly 

detection, do not require labelled data and can detect leaks by identifying patterns that deviate 

from normal operating conditions. While machine learning has shown promise, it is often 

hampered by the quality and quantity of available data, as well as challenges in handling the 

vast, complex pipeline networks where numerous variables can influence system behaviour 

(Mohamed et al, 2011). 

 

Reinforcement Learning: A New Approach to Pipeline Monitoring 

Reinforcement learning (RL) offers a novel approach to pipeline leak detection by 

enabling systems to learn from their interactions with the environment and adjust their 

strategies over time. Unlike supervised learning, where the model is trained on labelled data, 

RL learns by receiving feedback from the environment in the form of rewards or penalties. 

This allows the model to optimize its decision-making process, particularly in dynamic and 

uncertain environments like pipelines (Nicholas et al, 2020). 

Research has shown that RL can be effective in industrial monitoring applications, such 

as fault detection in manufacturing processes and robotics. By applying RL to crude oil 

pipelines, systems can learn to detect even subtle changes in pressure, flow, or temperature 

that may indicate a leak. The adaptive nature of RL makes it particularly suitable for 

pipelines, which operate under varying conditions, including weather changes, operational 

fluctuations, and environmental factors (Kannan et al, 2011). 

 

Integrating Sensor Data with Reinforcement Learning 

Contemporary pipeline monitoring systems utilize various sensors to monitor essential 

parameters like pressure, temperature, and flow rates. These sensors continuously produce 

data that needs to be analyzed in real-time to identify possible leaks. Sensor fusion refers to 

the technique of integrating data from multiple sensors to provide a more thorough 

understanding of the pipeline's status. When integrated with reinforcement learning, the 

sensor data gains enhanced effectiveness. 

The RL model can analyze sensor inputs and learn how to identify leak patterns more 

effectively than when using individual data sources (Kannan et al, 2011). By continuously 

adjusting its detection strategy based on real-time data, the system can improve its accuracy 

in identifying leaks and minimize false positives. This capability is particularly valuable for 

long, complex pipeline networks, where leaks can occur in remote or difficult-to-access areas 

(Khawar et al, 2016). 

about:blank


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
61 

METHODOLOGY 

 

Development of a Reinforcement Learning-Based Model 

The goal is to optimize a policy π(a∣s), where s is the state (representing pipeline 

conditions such as pressure, flow rate, etc.) and a is the action (i.e., detecting a leak or no 

leak). The model learns a policy π that maximizes the expected cumulative reward R, where 

the reward 𝑟𝑡 is received at time t when a leak is correctly detected. 
max 𝐸

𝜋
[∑ 𝛾𝑡𝑟𝑡

∞
𝑡=0 ]                                                     (1) 

where γ∈[0,1) is the discount factor. 

 

Optimization of Leak Detection Sensitivity 

To improve leak detection sensitivity, define the detection threshold θ for a leak based 

on a decision boundary. Sensitivity S is defined as the true positive rate: 

𝑆 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                     (2) 

where TP represents the true positives (correctly detected leaks) and FN represents the false 

negatives (missed leaks). The RL model optimizes θ to maximize S, while ensuring false 

positives FP remain minimized. 

 

Reduction of False Positives and Negatives  

The objective here is to minimize false positives (FP) and false negatives (FN). The 

performance of the system can be measured using a cost function C, which penalizes 

incorrect detections: 

𝐶 = 𝛼. 𝐹𝑃 + 𝛽. 𝐹𝑁                                                   (3) 

where α and β are weight factors representing the relative cost of false positives and false 

negatives, respectively. The RL model learns to minimize C by adjusting its detection 

strategy. 

 

Prediction of Future Leaks for Proactive Maintenance 

To predict future leaks, define a function f(t) that represents the probability of a leak 

occurring at time t, given historical data X (e.g., pressure, flow rate). This can be formulated 

as: 

𝑝(𝑙𝑒𝑎𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡|𝑋) = 𝑓(𝑋𝑡)                                                 (4) 

The RL system aims to learn a policy that minimizes the expected risk 𝑅𝑓 of future leaks: 

𝑅𝑓 = ∫ 𝑃(𝑙𝑒𝑎𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡|𝑋). 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑙𝑒𝑎𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑑𝑡       (5) 

 

Evaluation of the System’s Performance 

To evaluate the performance of the RL-based pipeline monitoring system, metrics like 

accuracy, precision, and recall are used. The accuracy can be expressed as follows: 

𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                    (6) 

The goal is to maximize accuracy, precision, and recall while minimizing false 

detection rates. Table 1 shows the parameters used in the system design and investigations. 
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Table 1: Design Parameters 
Leakage 

Event ID 

Detecti

on 

Time 

(hours) 

Leak 

Location 

(meters) 

Initial 

Flow 

Rate 

(m³/s) 

Leak 

Flow 

Rate 

(m³/s) 

Initial 

Pressure 

(psi) 

Leak 

Pressure 

(psi) 

Control 

Action 

Taken 

Action 

Time 

(hours) 

Outcome 

1 8 600 100 70 50 35 Increase 

Pressure 

8.5 Leak 

Contained 

2 12 450 95 65 48 32 Activate 

Alarm, 

Shut Off 

Valve 

12.5 Leak 

Controlled 

3 15 300 105 75 52 37 Reduce 

Flow 

Rate 

15.5 Leak 

Mitigated 

4 20 750 110 80 55 40 Increase 

Pressure, 

Activate 

Alarm 

20.5 Leak 

Detected, 

Monitoring 

5 22 500 100 60 50 33 Shut Off 

Valve 

22.5 Leak 

Stopped 

 

RESULTS AND DISCUSSION 

 

Cumulative Rewards of Episodes 

In Figure 1, which illustrates the cumulative rewards in relation to the number of 

episodes, we observe a progressive increase in cumulative rewards as the number of episodes 

grows from 0 to 100. The figure highlights how cumulative rewards accumulate over time, 

reflecting the effectiveness of the reinforcement learning (RL) algorithm as it interacts with 

the environment. Initially, as the number of episodes increases from 0 to 50, we see a 

relatively gradual rise in cumulative rewards. This slow start can be attributed to the RL 

agent's early learning phase, where it is still exploring the environment and experimenting 

with various actions. During these early episodes, the agent is often in a phase of trial and 

error, which leads to modest improvements in cumulative rewards. As the agent continues to 

learn and accumulate more episodes, a more pronounced increase in cumulative rewards is 

observed. By the time the number of episodes reaches 100, the cumulative rewards reflect the 

agent’s enhanced ability to make effective decisions based on its experience. This growth 

indicates that the RL model is successfully learning from past interactions, optimizing its 

actions over time, and achieving higher rewards as it becomes more adept at handling the 

leakage detection task. Overall, the trend in the figure demonstrates the RL agent's 

progressive improvement and adaptation. The increase in cumulative rewards over a growing 

number of episodes signifies that the agent is refining its strategies and achieving better 

performance as it gains more experience in the leakage detection environment. 
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Figure 1: Cumulative reward over episodes 

 

Sensitivity  

Figure 2 illustrates how sensitivity rises as the detection threshold increases from 0 to 1. 

At a threshold of 0, the system is overly sensitive, detecting even minor fluctuations as 

potential leaks, leading to numerous false positives. As the threshold is increased, the system 

becomes more selective, focusing on larger deviations that are more likely to indicate actual 

leaks. This adjustment reduces false positives, which paradoxically increases sensitivity, as 

the system now better distinguishes true leak events from normal variations. Thus, while 

fewer false alarms occur, the system's ability to identify real leaks improves, demonstrating 

an optimal balance between sensitivity and threshold settings. 

 

 
Figure 2: Sensitivity vs Detection threshold 

 

Cost Function  

Figure 3 shows the performance of the leakage detection system with a cost function 

value of 0.3 and a detection threshold of 1. At this threshold level, the system is set to 

identify only substantial deviations from normal conditions, minimizing false positives. The 

cost function value of 0.3 reflects the balance between false positives and false negatives, 

indicating a moderate trade-off where the system maintains a relatively low cost while 

effectively detecting significant leaks. This setting implies that while some minor leaks might 

be missed, the system is efficient in recognizing and responding to major leak events without 

incurring excessive detection costs. 
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Figure 3: Cost function vs detection threshold 

 

Leakage Detection Probability 

Figure 4 depicts the leakage detection system’s performance with a leakage probability 

of 1 within 4 seconds. This high probability indicates that a leak is almost certain to occur 

within this time frame. The system is designed to handle such frequent leak occurrences 

effectively. The figure likely shows the system's response and accuracy in detecting these 

high-probability leaks, demonstrating its ability to promptly identify and react to leaks that 

are expected to happen almost every 4 seconds. This setup ensures that the system remains 

vigilant and responsive, optimizing detection performance in scenarios with frequent leak 

risks. 

 
Figure 4: Probability of Future Leaks Over Time 

 

Performance Metrics 

When the reinforcement learning (RL) algorithm achieves 100% accuracy, as depicted 

in Figure 5, it signifies that the system correctly identifies all leakage events without any 

errors. This perfect accuracy indicates that the RL model has effectively learned and adapted 

to the environment, successfully distinguishing between normal conditions and leaks in all 

instances. The precision of the system, which increased from 0% to 100%, reflects the 

algorithm's ability to minimize false positives—instances where the system incorrectly 

classifies a non-leak as a leak. Initially, a precision of 0% implies that the system was prone 

to frequent false alarms, resulting in a significant number of incorrect leak detections. 

However, as the RL algorithm iteratively improves through training, it becomes more adept 

at filtering out false positives and correctly identifying genuine leaks. The special behavior of 
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the RL algorithm contributes to this precision improvement through its learning process. RL 

algorithms adapt their policies based on feedback from their environment, learning from past 

actions and outcomes. This iterative learning helps the model to refine its detection 

capabilities, reduce false alarms, and increase overall precision. As the RL agent gains more 

experience, it adjusts its detection thresholds and strategies to enhance accuracy, ultimately 

achieving a state where it can effectively distinguish between actual leaks and normal 

variations with high precision. This leads to a perfect accuracy rate and a precision of 100%, 

demonstrating the algorithm’s effectiveness in optimizing leak detection performance. 

 

 
Figure 5: Performance Metrics vs Detection Threshold 

 

Detected Leakage in Pipeline 

The detected leakage in the pipeline, where the pressure dropped from 55 psi to 36 psi 

over 12 hours, indicates a significant and sustained loss of pressure. This substantial drop 

suggests a considerable leak or defect in the pipeline system. The pressure reduction over 12 

hours reflects a gradual but steady loss, likely impacting the system's operational efficiency. 

Such a notable decline in pressure typically triggers immediate investigation and response to 

mitigate potential damage, prevent further loss, and ensure the pipeline's integrity and safety 

as shown in Figure 6. 

 

 
Figure 6: Effect of Leakage on Pipeline Pressure Over Time 
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Detection of Leakage Location 

When the pressure in the pipeline fell from an initial 55 psi to 36 psi, it indicated a 

significant issue likely due to a leak. This drop in pressure could compromise the pipeline's 

integrity and efficiency. Upon detecting this anomaly, reinforcement control measures were 

implemented. These controls, such as adjusting pressure settings or activating compensatory 

mechanisms, successfully restored the pressure back to 55 psi, thus stabilizing the system. 

Additionally, the detected leakage was pinpointed at 600 meters along the 1000-meter 

pipeline. This precise detection of the leak location allowed for targeted repairs or 

interventions, addressing the issue efficiently without unnecessary disruption to the entire 

pipeline. The effective restoration of pressure, combined with accurate leak detection, 

demonstrates the robustness of the control system in managing pipeline integrity and 

minimizing potential operational impacts as shown in Figure 7. 

 

 
Figure 7: Detection of Leakage Location 

 

Flow Rate and Pressure Effect on Leakage Detection 

Figure 8 illustrates a significant system response to a drop in flow rate and pressure. 

Initially, the flow rate decreased from 100 cubic meters to 80 cubic meters and further 

declined below this level. Concurrently, the pressure fell from 55 psi to 40 psi and 

subsequently dropped below 40 psi. This decline indicates potential issues such as leaks or 

blockages in the pipeline. The simultaneous drop in both flow rate and pressure highlights a 

severe operational disturbance, likely requiring immediate investigation and intervention. 

This pattern underscores the critical need for effective monitoring and control mechanisms to 

address and rectify such disruptions. 
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Figure 8: Flow rate and pressure rate evaluation 

 

The table shows the results of the pipeline leakage detection system using 

reinforcement learning. 

 

Table 2: Leakage Detection Results 
Result 

ID 

Condition Initial 

Pressu

re 

(psi) 

Final 

Pressure 

(psi) 

Initial 

Flow 

Rate 

(m³) 

Final 

Flow 

Rate 

(m³) 

Leakage 

Location 

(meters) 

Detection 

Time 

(hours) 

Control 

Action 

Taken 

Outcome 

1 Pressure 

drop 

without 

control 

55 36 100 Not 

specifie

d 

600 12 None Leak 

Detected, 

Pressure 

Drop 

2 Pressure 

restored 

with 

reinforceme

nt control 

55 55 100 Not 

specifie

d 

600 12 Reinforce

ment 

Control 

Applied 

Pressure 

Restored 

3 Flow rate 

and 

pressure 

drop 

55 <40 100 <80 Not 

specified 

Not 

specified 

Not 

specified 

System 

Disturbance 

4 Flow rate 

drop with 

subsequent 

pressure 

drop 

55 <40 100 <80 Not 

specified 

Not 

specified 

Not 

specified 

Operational 

Issue 
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CONCLUSIONS 

In conclusion, the investigation into leakage detection and control within the pipeline 

has yielded significant insights into system performance and effectiveness. The objectives, 

including enhancing leakage detection accuracy, optimizing control responses, and improving 

overall system reliability, were successfully addressed. The application of reinforcement 

learning proved instrumental in achieving 100% accuracy and increasing precision from 0% 

to 100%, demonstrating the model’s capability to refine detection and minimize false 

positives over time. The results indicate that the system effectively detected pressure drops, 

with the pressure dropping from 55 psi to 36 psi, and subsequent control measures restored it 

to 55 psi. The precise detection of leakage at 600 meters along the pipeline allowed for 

targeted interventions, preventing further operational disruptions. Additionally, the 

observation of flow rate and pressure changes underscored the importance of prompt and 

accurate response mechanisms. Overall, the enhanced control strategies and improved 

detection accuracy contribute to a more robust and reliable pipeline management system, 

ensuring both operational efficiency and safety. The findings validate the effectiveness of 

integrating advanced algorithms in optimizing pipeline maintenance and leak management 

strategies. 
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