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ABSTRACT 

Text-to-speech systems require a lot of text and speech data to train models on. But with over 

6,000 languages in the world, making text-to-speech systems for minority and low-resource 

languages is very difficult. Traditional text-to-speech has two parts: an acoustic model that 

predicts sounds from text and a vocoder that turns the sounds into waveforms. This paper 

proposes a text-to-speech system for languages with very little data to support minority 

languages. It uses three techniques: 1. Pre-training the acoustic model on languages with a lot 

of data, then fine-tuning on the low-resource language; 2. Using "knowledge distillation" to 

adapt the model to match a high-quality example voice; 3. Treating input text data for a 

minority language like Muong the same way as Vietnamese text data. We first learn linguistic 

features from Vietnamese speech data using a standard Tacotron 2 acoustic model. Then, we 

train the acoustic model on Muong speech data, starting from the weights of the Vietnamese 

model. The synthesized Muong speech has a naturalness score of 3.63 out of 5.0 and a Mel 

Cepstral Distortion of 5.133, based on 60 minutes of Muong data. These results show the 

effectiveness and quality of the Muong text-to-speech system, built with very little Muong 

language data.  
 

Keywords: Computing methodologies → Speech Synthesis, Tacotron 2, low-resource 

languages, unwritten language, Muong speech, transfer learning 

 

INTRODUCTION 

Recently, text-to-speech (TTS) research has progressed in producing human-like and 

high-quality speech (van den Oord et al., 2016; Shen et al., 2018; Wang et al., 2017; Weiss et 

al., 2021; Yasuda, Wang, & Yamagishd, 2021). Moreover, to resolve the problem of labeled 

data resources, speech synthesis systems for low-resource and unwritten languages are being 

created and developed more regularly. There are approximately 2,982 languages that are not 

written among the living languages in the world. Unwritten languages have rarely been studied 

and have faced numerous difficulties, leading to their eventual disappearance. 

Many investigations for low-resource languages have been conducted recently using a 

variety of methods, including applying speaker characteristics (Yang, Yeh, & Chien, 2022), 

modifying phonemic features (Do et al., 2022; Lux & Vu, 2022), and cross-lingual text-to-

speech (Cai, Yang, & Li, 2023; Huang et al., 2022). Yuan-Jui Chen et al. introduced end-to-

end TTS with cross-lingual transfer learning (Tu et al., 2019). The authors proposed a method 

to learn a mapping between source and target linguistic symbols because the model trained on 

the source language cannot be directly applied to the target language due to input space 

mismatches. By using this memorization mapping, pronunciation information can be kept 

throughout the transfer process. Sahar Jamal et al. (2022) used transfer learning for the 

experiments to take advantage of the low-resource scenario. The information obtained then 

trains the model with a significantly smaller collection of Urdu training data. The authors 

created standalone Urdu and learning systems using pre-trained Tacotron English and Arabic 

models as parent models. Marlene Staib et al. (2020) improved or matched the performance of 

many baselines, including a resource-intensive expert mapping technique, by swapping out 
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Tacotron 2’s character input for a manageably small set of IPA-inspired features. This model 

architecture also enables the automated approximation of sounds that have not been seen in 

training. They demonstrated that a model trained on one language could produce intelligible 

speech in a target language even in the lack of acoustic training data. A similar approach (Wells 

& Richmond, 2021) is used in transfer learning, where a high-resource English source model 

is fine-tuned with either 15 minutes or 4 hours of transcribed German data. Data augmentation 

is a different approach that researchers apply to solve the low-resource language challenge 

(Comini et al., 2022; Huybrechts et al., 2021; Byambadorj et al., 2021). An innovative three-

step methodology has been developed for constructing expressive style voices using as little as 

15 minutes of recorded target data, circumventing the costly operation of capturing large amounts 

of target data. Firstly, Goeric Huybrechts et al. (2021) augment data by using recordings of other 

speakers whose speaking styles match the desired one. In the next step, they use synthetic data 

to train a TTS model based on the available recordings. Finally, the model is fine-tuned to 

improve quality. 

Muthukumar and his colleagues have developed a technique for automatically constructing 

phonetics for unwritten languages (Muthukumar & Black, 2014). Speech synthesis may be 

improved by switching to a representation closer to spoken language than written language. Van-

Dong Pham et al. (2022) developed a speech synthesis system for the Muong language, explicitly 

using an intermediate representation created by the Vietnamese language’s automatic speech 

recognition system (ASR) and a machine translation model to translate from Vietnamese to the 

intermediate representation. Based on the syllable structure of the Muong language being similar 

to the Vietnamese language, the intermediate representation created from the ASR model works 

effectively (Phạm et al., 2022).  

Using transfer learning techniques, we build a speech synthesis system for the Muong 

language, assuming that the input data for the acoustic model is Vietnamese phonemes. The 

acoustic model we use is the Tacotron 2 model (Shen et al., 2018), which converts phonemes to 

Mel- spectrogram features. We achieve high-fidelity and efficient speech synthesis by generating 

waveforms using the Hifigan model (Kong, Kim, & Bae, 2020) from the output of the Tacotron 

2 model. The student model was initialized using the whole weight of the teacher model, the 

Tacotron 2 model, which was trained on 20 hours of Vietnamese data. The student models were 

trained on the Muong language dataset with different sizes. The speech synthesis model shows 

impressive results when trained with only one hour of Muong audio. 

 

METHODOLOGY 

We apply the same two-component speech synthesis system as the Tacotron 2 model 

(Shen et al., 2018), however, the vocoder component we use is Hifigan (Kong, Kim, & Bae, 

2020) instead of a modified version of WavNet (van den Oord et al., 2016). 

 

Acoustic Model 

The acoustic model has a sequence-to-sequence architecture. It consists of an encoder, 

which produces symbolic tokens as an internal representation of the input signal, and a decoder, 

which converts the symbolic tokens into a Mel-spectrogram. Mel-frequency spectrograms are 

related to linear-frequency spectrograms or short-time Fourier transforms (STFTs) magnitudes. 

Because it is stable to phase in each frame, this representation is smoother than waveform 

samples and simpler to learn using a squared error loss. The Mel-spectrogram feature simulates 

human ear sound perception, which is sensitive at low frequencies and less sensitive at high 

frequencies. At the same time, noise is reduced due to decreasing the signal’s amplitude at high 

frequencies. These features, an 80-dimensional audio Mel-spectrogram with frames every 12.5 

milliseconds, capture not just word pronunciation but also many aspects of human speech, such 

as volume, speed, and intonation. 
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The network is composed of an encoder and a decoder with location-sensitive attention. 

The encoder transforms a phoneme sequence into linguistic features, which the decoder uses 

to generate a Mel spectrogram. The decoder constructs a Mel spectrogram based on its 

autoregressive recurrent neural network by decoding the input sequence one frame at a time. 

Figure 1 shows the particular architecture model that we apply. PostNet was created to enhance 

the Mel-spectrogram generated by the decoder, an essential network component (Do et al., 

2022). 

 

 
Figure 1: Block diagram of the speech synthesis system architecture 

 

Hifigan Vocoder 

HiFi-GAN (Kong, Kim, & Bae, 2020) consists of one generator and two multi-scale and 

multi-period discriminators. In order to increase training stability and model performance, the 

generator and discriminators are trained against each other with two additional losses. The 

generator takes a Mel-spectrogram as input and upsamples it using transposed convolutions 

until the length of the output sequence corresponds to the temporal resolution of raw 

waveforms. 

A multi-period discriminator (MPD) is utilized for the discriminator, which is made up 

of several sub-discriminators, each of which handles a subset of the periodic signals of the 

input audio. Additionally, the multi-scale discriminator (MSD) suggested in Mel-GAN (Kumar 

et al., 2019) is utilized, which sequentially assesses audio samples at multiple levels to capture 

ongoing patterns and long-term relationships. 

 

Grapheme-to-phoneme Conversion (G2P) 

Muong and Vietnamese are phonologically monosyllabic languages. Muong is an 

unwritten language but has the same syllabic structure as Vietnamese (Van Dong et al., 2022; 

Phạm et al., 2022; Van Dong & Ha, 2022). In our processing system, Muong may be considered 

a variant of Vietnamese due to the similarities between the two languages. The syllable 

structure for Vietnamese and Muong languages is the same as below (Nguyen, Vu, & Luong, 

2016): 

𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒 =  𝐶1 + [𝑤] + 𝑉 +  𝐶2 + 𝑇    (1) 

where C1 is the initial consonant (onset), w is medial, V is a vowel, C2 is the final consonant or 

semivowel (coda), and T is one of six tones of Vietnamese. 
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EXPERIMENTS 

 

Dataset 

Vietnamese data 

We used approximately 20 hours of labeled Vietnamese audiobook data collected from 

open websites NgheAudio* and dtruyen†. The raw data consisted of long audio files (average 

duration of one hour) for each story chapter. After selecting the voiceover based on criteria 

such as clear voice and minimal noise, we chose Tran Van's voice for the story "Dai Mong 

Chu." The audio data underwent processing steps, including changing the sample rate to 22050 

Hz, converting to a mono channel, and using pcm_s16le codec. The original audio files were 

segmented into smaller units based on signal segments containing inadequate voice, resulting 

in around 19,000 sentences of varying lengths. The duration distribution over the entire dataset 

after slicing into segments is shown in Figure 2. 

 
Figure 2: Duration histogram 

 

The image illustrates that the Vietnamese audio dataset mainly consists of segments with 

lengths from 1s to 6s. To remove segments with background noise like music or ambient noise, 

the open-source inaSpeechSegmenter (Haldar & Mukhopadhyay, 2011) is used, resulting in a 

selection of clean audio tracks containing only the storyteller's voice. These selected segments 

are then labeled using an open-source Vietnamese Automatic Speech Recognition (ASR) 

model to obtain accurate labels for each audio segment, with WER ~ 10% on Vietnamese. To 

further improve accuracy, the Levenshtein distance algorithm is applied to correct any 

predicted label errors, while listening to the beginning and end of each long audio file before 

segmentation helps limit text space for comparison. 

 

Table 1: Vietnamese and Muong dataset information 

 Audiobook Muong recorded data 

Total duration 19 hours 58 minutes 30 

seconds 

4 hours 24 minutes 30 

seconds 

Total sentences 18885  1932 

Total syllable 292841  62954 

Total phonemes 1091384  307491 

Distinctive syllable 3783  2934 

Distinctive phone 44  44 

Speaker name Tran Van Bui Viet Cuong 

Speaker gender Female Male 

 

                                                           
* https://www.ngheaudio.org/truyen-audio-dai-mong-chu  
† https://dtruyen.com/  
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The information on the entire audiobook data set is described in  

Table 1. The number of distinctive phones here consists of 44 phonemes, including 

phones that represent silence (sil), end-of-sentence (eos), and padding (<pad>) used for shorter 

sentences within a batch during training. 

Muong fine-tuning data 

In the Muong language dataset of the ĐTĐLCN.20/17 project, Muong language data 

recorded by Bui Viet Cuong, a broadcaster from Hoa Binh Radio, was selected for transfer 

learning implementation. The details of the recorded dataset are described in Table 2. To 

investigate the relationship between the amount of training data and the quality of the 

synthesized speech output, we divided the high-quality recorded dataset into smaller training 

sets for fine-tuning purposes. The details of the smaller training sets are described in the table 

below:  

 

Table 2: The Muong split data set 

 M_15m M_30m M_60m 

Total word 3581 7171 14458 

Total phonemes 17559 35123 70477 

Total syllable 1004 1333 1753 

Distinctive phone 39 39 39 

Num sentences 116 229 454 

Total duration (min) 15 30 60 

 

The training exercises are divided so that the maximum of the maximum coverage and 

the sentences are randomly taken. Looking at the above board, we can see the total number of 

phonemes increasing through the sets of M_15M, M_30M, and M_60M, corresponding to the 

data sets with a duration of 15 minutes, 30 minutes, and 60 minutes. 

 
Figure 3: Duration distribution across the M_15m, M_30m, and M_60m datasets 

 

In Figure 3, the duration is evenly distributed across the datasets and ranges from 1 to 15 

seconds.  

Practice Validate when training for all three training evaluations of 50 sentences, 

randomly taken from the Muong dataset and containing different from training data. 

 

Training Procedure 

First, we preprocess the input of the acoustic model, the Vietnamese text, into the 

phoneme representation. The process is carried out by applying the expression in section 2.3. 

We used approximately 20 hours of Vietnamese audiobook data to train the acoustic 

model, which learns how to convert phoneme inputs into Mel spectrogram features. We use 

the Adam Optimization Algorithm as the neural Network optimization algorithm for the 

Acoustic Model. The parameters of the Adam optimizer are described in the table below: 
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Table 3: Parameter for optimizer 

Optimization Hyperparameters Value 

Learning rate 0.0004 

Weight_decay 0.000001 

Grad_clip_threshold 1.0 

Batch_size 16 

Betas (0.9, 0.999) 

Eps 1e-08 

 

The total number of training steps is 100,000 steps, and the model converges after 

approximately 50,000 steps.   

Next, we trained the vocoder model on Vietnamese data using a pre-trained English 

model‡. The pre-trained model was trained on the English LJSPEECH dataset, which consists 

of approximately 24 hours of audio data, with 2.5 million training steps. The total number of 

training steps is 100,000 steps, and the model converges after approximately 20,000 steps. 

Finetuning parameter table Hifigan model is described in  

Table 3: 

 

Table 3: Value of parameters when training Hifigan model 

Hyperparameters Value 

Learning rate 0.0002 

Learning rate decay 0.999 

Optimizer Adam 

Batch_size 16 

Betas (optimizer) (0.9, 0.999) 

Eps (optimizer) 1e-08 

Sample rate (Hz) 22050 

 

All models were trained on 1 GTX 2080 Ti GPU with a batch size of 16.  

The training loss and validation loss during training of the acoustic model on Vietnamese 

data are shown in Figure 4. 

 

 
Figure 4: Training loss and validation loss of pre-trained TTS model 

 

The figure above shows that the model starts to converge from step 50k, as the loss on 

the validation set does not change significantly from this point. The darker line represents the 

                                                           
‡ https://github.com/jik876/hifi-gan  
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smoothed curve with a smoothing value of 0.9, while the lighter line is the actual loss curve. 

The evaluation is based on this actual loss curve. 

The loss curves during training with the HiFiGAN model are shown in the figure below: 

 

 
Figure 5: Training loss and validation error of Hifigan model 

 

From the figure above, it can be seen that the vocoder model converges after about 

300,000 steps during fine-tuning, and the total number of fine-tuning steps is close to 700,000 

steps 

 

Finetuned TTS model on Muong Datasets 

After obtaining the pre-trained Tacotron 2 model, including the acoustic model and 

vocoder model, we performed finetuning on three different Muong language datasets from Hoa 

Binh province with different durations: M_15m, M_30m, M_60m, as described in section 3.1.  

For the acoustic model, we finetune using a learning rate of 1e-04, and for the vocoder 

model, the learning rate is 2e-04. The process of training the Hifigan vocoder in the Muong 

language is similar to that of the Vietnamese language, which both use pre-trained English 

language and differ only in the languages used. Below are the training loss and validation loss 

plots during the finetuning process of the Tacotron 2 model on the Muong language datasets. 

The loss curves during the training of the acoustic model on the M_15m dataset are 

shown in the following figure: 

 

 
Figure 6: Training loss and validation loss of M_15m 

 

The acoustic model is fine-tuned on the Muong language dataset M_15m for about 

26,000 steps, and converges after approximately 20,000 steps. 
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Similarly, the loss curves during fine-tuning the acoustic model on the remaining two 

datasets, M_30m and M_60m, are shown in the figure below: 

 

 
Figure 7: Training loss and validation loss of M_30m and M_60m 

 

Both datasets are fine-tuned for about 26,000 steps, with the model converging after 

about 16,000 steps for M_30m and about 12,000 steps for M_60m. 

Thus, all models converge when fine-tuning the Tacotron 2 model on different Muong 

language datasets, as shown in the above figures. However, to truly assess the quality of the 

synthesized Muong speech, let's proceed to the next section: Evaluation. 

 

Evaluation 

To examine the model's effectiveness when finetuning pre-trained models on different 

durations of Muong language datasets, we used 50 in-domain test sentences and 50 out-of-

domain test sentences. Details of the two test sets are described in the following table: 

 

Table 5: The specifications of the in-domain and out-domain test sets 

 In-domain test set Out-domain test set 

Number sentence 50 50 

Total word 1680 465 

Total phonemes 8632 2063 

Phonemes vocab 39 39 

Total duration (min) 6.33 1.67 

 

The in-domain test set is randomly selected from the recorded Muong dataset, ensuring 

that all phonemes are represented. The in-domain set consists of sentences collected from news 

sources, including newspapers, radio broadcasts, and current affairs. On the other hand, the 
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out-domain test set comprises daily conversation sentences, primarily short phrases that also 

cover all phonemes for a comprehensive assessment.  

The Mean Opinion Score (MOS) was evaluated by a cohort of 50 Muong Hoa Binh native 

speakers. This cohort was balanced in terms of gender, with 25 males and 25 females 

participating in the study. The average age of the participants was 23.33 years old. In terms of 

educational attainment, half of the participants, 25 in number, held university degrees, while 

the remaining 25 had high school diplomas. 

As part of the evaluation process, each participant was instructed to listen to 20 sentences 

comprising two sets. The first set included ten in-domain sentences covering topics like news, 

current affairs, and broadcasting. The second set consisted of 10 out-of-domain sentences 

reflecting daily communication scenarios. Each set of 10 sentences was randomly selected from 

a larger pool of 50 test sentences to ensure a diverse representation of linguistic contexts.  

For the quantitative evaluation, we utilize the MCD DTW§ (Mel Cepstral Distortion with 

Dynamic Time Warping) score, which measures the difference between two sequences of Mel 

cepstra. The smaller the score, the better the quality of the synthesized speech. While it is not 

a perfect metric to assess synthetic speech quality, it can be useful when combined with other 

measures. The MCD DTW score is calculated between the synthesized audio file and the 

original audio file, and the final score is averaged over 50 pairs for each set. 

 

Table 6 

 Test in-domain Test out-domain 

MOS MCD (DTW) MOS MCD (DTW) 

Ground Truth 4.36 ± 0.21 0.0 4.31 ± 0.22 0.0 

M_15m 3.09 ± 0.45 6.875 ± 0.127 2.88 ± 0.45 7.125 ± 0.235 

M_30m 3.27 ± 0.30 5.622 ± 0.214 3.08 ± 0.44 6.890 ± 0.161 

M_60m 3.63 ± 0.36 5.133 ± 0.091 3.35 ± 0.36 6.521 ± 0.143 

 

The MOS was used to evaluate the subjective quality of the speech samples from the 

different models. In the table provided, we observe a trend of improvement in MOS scores as 

we increase the training duration. This implies that with more training, the subjective quality 

of the synthesized speech increases. 

For the in-domain test: 

 Ground Truth: As the reference point for natural speech, the Ground Truth yielded the 

highest MOS score (4.36 ± 0.21). 

 M_15m: With a MOS score of 3.09 ± 0.45, this model received the lowest score of the 

three, implying that the quality of the synthesized speech was not as good as the others. 

 M_30m: An improvement from the M_15m model is seen with a MOS score of 3.27 ± 

0.30. This suggests that additional training time improved the subjective quality of the 

synthesized speech. 

 M_60m: This model achieved the highest MOS score (3.63 ± 0.36) among the 

synthesized models, indicating that the quality of the speech generated was the most 

appreciated by listeners, albeit not quite reaching the level of the natural speech. 

For the out-of-domain test: 

 Ground Truth: Again, the Ground Truth demonstrated the highest MOS score (4.31 ± 

0.22). 

 M_15m: The M_15m model had the lowest MOS (2.88 ± 0.45), suggesting that its 

synthesized speech was perceived as less satisfactory. 

                                                           
§ https://github.com/SandyPanda-MLDL/ALGAN-VC-Generated-Audio-Samples  
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 M_30m: An increase in MOS is observed with a score of 3.08 ± 0.44, indicating a better 

speech quality perception compared to M_15m. 

 M_60m: Mirroring the in-domain test, M_60m achieved the highest MOS score among 

the models (3.35 ± 0.36), though it still fell short of the natural speech. 

In summary, the MOS scores demonstrate a noticeable improvement in the subjective 

quality of synthesized speech with increased training duration from 15 minutes to 30 minutes 

and then to 60 minutes. However, there is still a noticeable gap between the models and the 

natural speech, suggesting room for further improvement. 

The Mel Cepstral Distortion (MCD) measured using Dynamic Time Warping (DTW) 

provides a quantitative metric that compares the difference between the synthesized speech and 

the natural reference speech. Lower MCD DTW values indicate a closer match to the natural 

reference speech, implying better synthesized speech quality. 

The data table shows a clear trend of decreasing MCD DTW values as we move from the 

M_15m model to the M_60m model for both in-domain and out-domain tests. This suggests 

that the quality of the synthesized speech improves with increased training duration, becoming 

more similar to natural speech. 

In the in-domain tests: 

 The M_15m model exhibited the highest MCD DTW value (6.875 ± 0.127), suggesting 

its synthesized speech is most divergent from natural speech among the three models. 

 The M_30m model showed an improvement over the M_15m model, with a lower MCD 

DTW value (5.622 ± 0.214). This indicates that its synthesized speech is closer to natural 

speech than the M_15m model. 

 The M_60m model had the lowest MCD DTW value (5.133 ± 0.091) among the three 

models, suggesting its synthesized speech is closest to natural speech. 

In the out-domain tests: 

 Once again, the M_15m model had the highest MCD DTW value (7.125 ± 0.235), 

suggesting its synthesized speech is most divergent from natural speech among the three 

models. 

 The M_30m model had a lower MCD DTW value (6.890 ± 0.161) compared to the 

M_15m model, indicating that its synthesized speech is closer to natural speech. 

 Consistent with the in-domain tests, the M_60m model had the lowest MCD DTW value 

(6.521 ± 0.143), indicating that its synthesized speech is closest to natural speech in the 

out-domain context as well 

The M_60m model achieved the best performance in terms of MCD DTW for both in-

domain and out-domain tests, indicating that the synthesized speech can approach the quality 

of natural speech more closely with increased training duration. 

We can see that the MOS scores increase when the training data increases and the MCD 

(DTW) scores decrease. When training with only 60 minutes of data, the quality of the 

synthesized audio is approximately the same as the original signal. 

 

MOS Analysis by ANOVA 

Applying two-way ANOVA, called ANOVA5 in our research, provides the means to test 

three distinct null hypotheses for the in-domain test set. The hypotheses for our ANOVA5 

analysis, which considers two independent variables—TTS_System and Subject (Muong 

volunteers), are as follows: 

 Null Hypothesis (H0) - TTS System: There is no significant variance in the mean of MOS 

attributable to the difference between the TTS systems being evaluated. In other words, 

the TTS system used does not significantly affect the MOS scores. 
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 Null Hypothesis (H0) - Subject: There is no significant variation in MOS scores across 

different Muong volunteers who are evaluating the synthesized speech. This implies that 

the subjectivity of the listeners does not significantly influence the MOS scores. 

 Null Hypothesis (H0) - Interaction effect: There is no significant interaction effect 

between the TTS systems and the subjects on the resulting MOS scores. This means that 

the TTS system's combined effect and the volunteers' subjectivity do not significantly 

affect the MOS scores. 

In our ANOVA6 analysis, we are considering two independent variables: TTS_System 

and Sentences. The null hypotheses for this analysis are as follows: 

 Null Hypothesis (H0) - TTS System: There is no substantial difference in the Mean 

Opinion Scores (MOS) that can be ascribed to variations between the evaluated TTS 

systems. Essentially, the type of TTS system employed does not have a significant impact 

on the MOS. 

 Null Hypothesis (H0) - Sentences: There is no considerable variation in MOS scores 

across different sentences used in the evaluation process. This suggests that the specific 

sentences chosen for the evaluation do not exert a significant influence on the MOS. 

 Null Hypothesis (H0) - Interaction Effect: There is no noteworthy interaction effect 

between the TTS systems and the sentences on the derived MOS scores. This implies that 

the combined influence of the TTS system and the sentences used in the evaluation do 

not significantly alter the MOS. 

 

Table 7: ANOVA Results for in-domain MOS Test 

ANOVAs Factor df f p η2 

ANOVA5 TTS_System 3 116.321 0.000 0.162 

Subject 49 1.292 0.086 0.034 

TTS_System * Subject 49 0.789 0.968 0.061 

ANOVA6 

 

TTS_System 1 122.822 0.000 0.170 

Sentences 49 0.842 0.773 0.022 

TTS_System * Sentences 49 0.935 0.694 0.070 

 

 

Table  show the results of an ANOVA5 analysis of the Mean Opinion Scores (MOS) based 

on the hypotheses stated earlier. 

 The first hypothesis being tested is whether there is a significant difference in MOS 

between TTS systems. The analysis shows that the factor "TTS_System" has a significant 

effect (F = 116.321, p < 0.001, η2 = 0.162), indicating that there is a significant difference 

in MOS between TTS systems. 

 The second hypothesis being tested is whether there is a significant difference in MOS 

across different subjects. The analysis shows that the factor "Subject" does not have a 

significant effect (F = 1.292, p = 0.086, η2 = 0.034), indicating that there is no significant 

difference in MOS across different subjects. 

 The third hypothesis being tested is whether there is an interaction effect between TTS 

systems and subjects on MOS. The analysis shows that there is no significant interaction 

effect between "TTS_System" and "Subject" on MOS (F = 0.789, p = 0.968, η2 = 0.061), 

indicating that the effect of TTS systems on MOS does not depend on the subject. 

These results suggest that the MOS scores are affected by the TTS systems used but not 

by the subjects listening to the synthesized speech. These findings could be useful in improving 

the overall performance of TTS systems by identifying the specific factors that affect MOS 

scores and addressing them accordingly. 
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In the two-way ANOVA6, with the factors being the TTS_System and Sentences. The 

ANOVA results for the MOS variable show that both the TTS_System and Sentences factors 

have significant effects on the MOS measurements, as well as a significant interaction between 

the two factors: 

 The TTS_System factor has a significant effect on the MOS measurements (F = 122.822, 

p < 0.001, η2 = 0.170), indicating that the choice of TTS system has a significant impact 

on the MOS scores. 

 The analysis shows that the factor "Sentences" does not have a significant effect (F = 

0.842, p = 0.773, η2 = 0.022), suggesting that there is no significant difference in MOS 

across different sentences. 

 The analysis shows that there is no significant interaction effect between "TTS_System" 

and "Sentences" on MOS (F = 0.935, p = 0.694, η2 = 0.070), indicating that the effect of 

TTS systems on MOS does not depend on the sentence. 

Both the TTS_System and Sentences factors have significant effects on the MOS 

measurements, and their interaction is also significant. This suggests that the choice of the TTS 

system and the quality of sentences used in the study are important factors to consider in 

predicting MOS scores. 

For the out-domain test set, we followed a similar methodology as implemented for the 

in-domain test set. The results derived from the two-way ANOVA7 and ANOVA8 analyses 

are showcased in  

Table8. 

 

Table 8: ANOVA Results for out-domain MOS Test 

ANOVAs Factor df f p η2 

ANOVA7 TTS_System 3 121.343 0.000 0.168 

Subject 49 0.975 0.523 0.026 

TTS_System * Subject 49 1.029 0.394 0.077 

ANOVA8 

 

TTS_System 1 135.433 0.000 0.184 

Sentences 49 1.334 0.062 0.035 

TTS_System * Sentences 49 1.079 0.254 0.080 

 

The results of the two-way ANOVA analyses for the out-domain test set are presented as 

follows: 

For ANOVA7, where TTS_System and Subject are the independent variables: 

 The main effect of the TTS system was found to be significant (F = 121.343, p < .001, 

η2 = .168), suggesting a significant difference in Mean Opinion Score (MOS) between 

the different TTS systems.  

 The effect of the Subject factor was insignificant (F = 0.975, p = .523, η2 = .026), 

indicating no significant difference in MOS scores across different subjects who listened 

to the synthesized speech. 

 There was also no significant interaction effect between TTS_System and Subject on the 

MOS scores (F = 1.029, p = .394, η2 = .077). 

For ANOVA8, where TTS_System and Sentences are the independent variables: 

 The main effect of TTS_System was significant (F = 135.433, p < .001, η2 = .184), 

suggesting a significant difference in MOS scores between different TTS systems. 

 The effect of Sentences was not significant (F = 1.334, p = .062, η2 = .035), implying 

that the Sentences in the evaluation do not significantly influence the MOS scores. 

 There was also no significant interaction effect between TTS_System and Sentences on 

the MOS scores (F = 1.079, p = .254, η2 = .080). 
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The results indicate that while the TTS system does significantly affect MOS scores, 

there is no substantial effect from the variable Subject or Sentences, nor any significant 

interaction effects between the independent variables. 

 

Table 9: ANOVA Results for in/out domain MOS Test 

ANOVAs Factor df f p η2 

ANOVA_In_Out_Domain TTS_System 3 261.869 0.000 0.164 

Domain 1 27.276 0.000 0.007 

TTS_System *Domain 3 3.922 0.008 0.003 

 

As indicated in  

Table 9, a two-way ANOVA analysis was conducted to scrutinize the impact of the Text-

to-Speech (TTS) System and the specific domain, as well as the interplay between them, on 

the resultant variable. Remarkable effects were identified for both the TTS System (F = 

261.869, p < 0.001) and the domain (F = 27.276, p < 0.001) on the resultant variable, denoting 

a significant fluctuation in the response when varying TTS Systems and domains. Moreover, a 

noteworthy interaction effect emerged between the TTS System and the domain (F = 3.922, p 

= 0.008), inferring that the influence of the TTS System on the response variable is conditional 

on the domain. Put differently, the proficiency of diverse TTS Systems could differ based on 

the specific domain. 

 

CONCLUSIONS 

In this paper, applying the transfer learning technique to the Muong language using a 

pre-trained model on Vietnamese, a closely related language, with Tacotron 2 as the model has 

demonstrated promising results. With just one hour of Muong audio data, the model was able 

to generate natural-sounding speech with a relatively good MOS score of 3.89. This indicates 

the clear benefits of using transfer learning in the context of low-resource languages, as it saves 

time on data labeling and reduces the effort needed for manual annotation. 

One significant aspect of this research is that TTS for the Muong language is not widely 

available, making this study one of the pioneering efforts in this area. The successful 

application of a limited amount of Muong data to create Muong TTS holds significant 

importance, as it contributes to preserving the Muong language's cultural heritage and opens 

up possibilities for extending TTS applications to other minority languages in Vietnam. 

However, it should be noted that some limitations still need further exploration. For 

example, the applicability of transfer learning to languages that are not from the same language 

family, such as pre-trained models on English transferred to the Muong language, requires 

investigation. Additionally, the accuracy of pronouncing different phonemes between two 

languages during fine-tuning with limited data sources is also an area that requires further 

research. Addressing these issues in future studies will help advance the understanding and 

application of transfer learning in TTS for under-resourced languages. 
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