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ABSTRACT 

The stochastic frontier analysis has focused on parametric models in which, the parametric 

functional form of the frontier function is specified, and the method involved estimating the 

parametric of the frontier function as well as the technical inefficiency component. This 

approach imposed specific distributional assumptions on the error component and applied the 

method of Maximum Likelihood Estimation (MLE). The content of this paper is mainly a 

theoretical review of the literature to extend the frontier of knowledge, particularly on 

parametric and non-parametric models. In this paper, we first examined the contents of the 

parametric model followed by the distributional-free approach which does not depend on any 

specific assumptions. Following the parametric half-normal model, it is observed that, the 

inefficiency effect, which is treated as a non-negative truncated zero-mean normal distribution 

and folded zero-mean normal distribution provided similar results and can be used in applied 

production economics with no theoretical problem. In what follows with the free approach, the 

Corrected Ordinary Least Squares (OLS), which used residuals provided straightforward 

inefficiency effect estimates from a one-sided error term compared with the traditional 

parametric model, and hence its flexibility did not require any underlying distribution of the 

dataset to be defined in advance. Given the OLS estimates, the non-parametric model can adapt 

to the distribution of data (data-driven) of the 196 daily farmers, making it particularly useful, 

when there is little or no prior information about the distribution of data which may not fit well 

with the parametric models. Given the sample moment-based statistic for the skewness test 

(skewness test on OLS residuals), if the estimated result follows the expected sign, then the 

rejection of the null hypothesis provided evidence for the existence of the one-sided error. To 

help shift the stochastic frontier analysis to more robustness owing to outliers and non-normal 

error distribution, researchers are encouraged to adopt the non-parametric model, as it is not 

constrained by a specific functional form of the error term, but determined by the data itself, 

thus allowing for a more data-driven modelling approach, compared with the parametric model 

which may not offer the best fit to the data. 

 

Keywords: Stochastic frontier, Half-normal model, Maximum Likelihood, Skewness  

 

INTRODUCTION 

Production functions have often been applied to examine what the proportion of any 

increase in output over time can be, given increases in factors of production, the existence of 

increasing returns to scale, and what is known as ‘technical progress’ (Arrow et al., 1961). 
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While nothing has been said about what determines the proportions in which factor inputs are 

engaged to generate a given output, the stochastic frontier analysis pioneered by Aigner et al. 

(1977) and Meeusen and van de Broeck (1977) marked the departure from the traditional 

production functions to estimate technical efficiency of decision-making units. When 

modelling production behaviour, the standard production theory implicitly assumes that all 

production activities are on the frontier of feasible production set, subject to random noise. The 

common denominator is that, there is a potential maximum or minimum optimum level that 

defines the frontier. This is so because, the function may be saddled with disturbances on one 

hand showing technical efficiency and on the other, the marginal productivity representing 

economic efficiency (Kumbhakar & Bokusheva 2009). A production plan is therefore 

technically efficient, if a higher level of output is technically attainable for the given inputs 

(output-oriented measure) or the observed output can be produced using fewer inputs (input-

oriented measure) (Kumbhakar, 1988). In the context of the stochastic frontier analysis, we 

understand that any lower output within the market can be attributed to the presence of 

inefficiencies, which are of particular interest to economists, so that policy can be considered 

to improve the operation of inefficient firms particularly in competitive environment (Varian, 

2009). The best way to appreciate why this analysis is important is that, globally efficiency 

improvement is often considered as one of the most important goals behind many economic 

and investment reforms. For example, liberalizing our markets to competition, removal of trade 

barriers, and privatization of state enterprises are all motivated by the potential for efficiency 

improvements at least costs. Within businesses therefore, the measure of efficiency and the 

effects of efficiency determinants are key in the context of production economics. Following 

production economics, Aigner et al. (1977) and Meeusen and van den Broeck (1977) originally 

estimated the frontier model in which, the error components were specified, parametric 

distribution imposed, the log-likelihood derived, and numerical maximization procedures 

applied to calculate the maximum likelihood estimates. However, recent developments in the 

literature proposed the application of distribution-free approaches (thick frontier approach) on 

the error components to relax the distribution-related rigidity (Berger & Humphrey, 1991). 

Clearly, the choice of distribution for the random variable which represents the inefficiency 

effect is the issue at stake, and understanding how the assumption-free theory is adopted would 

help provide some relevant information in reducing difficulties in undertaking the parametric 

model. The extensive application of the parametric model makes it important to enquire to what 

extent and in what ways it is feasible to apply distribution-free assumptions given, the frontier 

models. The question seems so far to have been considered only from the viewpoint of 

approximations around a set of assumptions. Regarding which approach is the appropriate 

metric and what is the evidence, we seek to understand the process by dissecting parametric 

and non-parametric models in stochastic frontier models for similarity analysis and descriptive 

statistics (statistical inference) (Schmidt & Lin, 1984; Coelli, 1995; Kumbhakar et al., 2015).  

 

LITERATURE 

 

The Stochastic Production Frontier Model 

In the context of which firm may be achieving the maximum output (Kumbhakar et al., 

2010), the stochastic production frontier model for output-oriented technically inefficiency can 

be constructed as follows 

𝑙𝑜𝑔𝑦𝑖 = 𝑙𝑜𝑔𝑦𝑖
∗ − 𝑢𝑖 

𝑙𝑜𝑔𝑙𝑜𝑔𝑦𝑖
∗ = 𝑔(𝑥𝑖; 𝛽) + 𝑣𝑖 

 

The component 𝑢𝑖 represents log difference between the potential and the observed 

output (𝑢𝑖 = 𝑙𝑜𝑔𝑦𝑖
∗ − 𝑙𝑜𝑔𝑦𝑖),where 𝑦𝑖 denotes a scalar of observed yield, 𝑥𝑖 is a (𝐽 × 1) vector 
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of observed production inputs, 𝛽 is a (𝐽 × 1) vector of associated coefficients, 𝑣𝑖 is a zero-

mean error term such that 𝑢𝑖 ≥ 0 and it represents production technical inefficiency. If input 

variable 𝑥 is the frontier that produces the maximum output, then it is stochastic of the zero-

mean random term 𝑣𝑖. If at any given period, 𝑢𝑖 ≥ 0, what this means is that the actual or 

observed output is lower than the frontier output 𝑦𝑖
∗. This relationship can be expressed.  

𝑙𝑜𝑔𝑙𝑜𝑔𝑦𝑖
∗ = 𝑔(𝑥𝑖; 𝛽) + 𝜖𝑖 

𝜖𝑖 = 𝑣𝑖 − 𝑢𝑖 

The estimated value of 𝑢𝑖 is the output-oriented efficiency and this reduces to  

𝑒𝑥𝑝(−𝑢𝑖) =
𝑦𝑖

𝑦𝑖
∗ 

Hence, 𝑒𝑥𝑝(−𝑢𝑖) is the ratio of observed output to the maximum possible output and 

this is the technical efficiency of the firm bounded between 0 and 1. If we apply Farrell’s 

concept of technical efficiency, then 

𝑇𝐸𝑖 =
𝑦𝑖

𝑔(𝑥𝑖; 𝛽)
𝜖(0,1) 

where 𝑔(𝑥𝑖; 𝛽) represents the deterministic production function to estimate the underlying 

technology. In allowing a parametric form for output, given the error components, we compute 

𝑦𝑖 = 𝑔(𝑥𝑖; 𝛽) × 𝑒𝑣𝑖−𝑢𝑖 and when expressed in log, we obtain 𝑙𝑜𝑔(𝑦𝑖) = 𝑙𝑜𝑔 (𝑔(𝑥𝑖; 𝛽)) + 𝑣𝑖 −

𝑢𝑖, where 𝑣𝑖 is the normal error distributed as 𝑣𝑖~𝑁(0; 𝜎𝑣
2) and 𝑢𝑖 is positive denoting 

inefficiency distributed as 𝑢𝑖~𝑁(0; 𝜎𝑢
2).  

 

PARAMETRIC MODEL 

 

The Half-Normal Model 

In statistics, a parametric model or finite dimensional model is a statistical model which 

belongs to a family of probability distributions that possess finite number of parameters, 

embodies a set of statistical assumptions concerning the generation of sample data. It assumes 

some finite set of parameters 𝜔, given the parameters, the future prediction of 𝑥 are independent 

of the observed dataset 𝒟 such that 𝑝(𝑥|𝜔, 𝒟) = 𝑝(𝑥|𝜔). In this section, we explore the widely 

applied assumptions of the half-normal model. Following from the stochastic frontier, we 

estimate the parametric distributional assumptions on 𝑣𝑖 and 𝑢𝑖. The production stochastic 

frontier model with a normal distribution on 𝑣𝑖 and a half-normal distribution on 𝑢𝑖 are 

expressed, treating 𝑣𝑖 and 𝑢𝑖 as independent, i.e. 𝑣𝑖~𝑁(0, 𝜎𝑣
2 ) and 𝑢𝑖~𝑁+(0, 𝜎𝑢

2 ). Notice that, 

if the inefficient effects are allowed to follow the half-normal distribution, two estimators can 

be derived. Firstly, we treat the inefficient effect as non-negative truncated of zero-mean 

normal distribution, 𝑁+(0, 𝜎𝑢
2 ), where 𝜎𝑢

2 is the variance of the normal distribution before 

truncation. Consider again that, a random variable 𝑍 has a normal distribution such that 

𝑧~𝑁(𝜇, 𝜎𝑧
2 ) with a corresponding probability function modeled as 𝑔(𝑧), then the density 

function of the random variable 𝑧 is approximated by the function (Kumbhakar et al., 2015) 

𝑓(𝑧) =
𝑔(𝑧)

1 − Φ (
𝛼−𝜇

𝜎𝑧
)

=

1

𝜎𝑧
∅(𝑧 − 𝜇)

1 − Φ (
𝛼−𝜇

𝜎𝑧
)
 

Suppose we assume that it is truncated from above, labelled as 𝛼 so that 𝑧 ≥ 𝛼, then ∅ 

and Φ represent the probability density and probability distribution functions respectively for 

𝑧 (Johnson et al., 1995). Consider that the inefficiency effect 𝑢𝑖 can be generated if 𝜇 = 0 and 

𝛼 = 0, then the density function in this case is 

𝑓(𝑢𝑖) =

1

𝜎
∅ (

𝑢𝑖

𝜎
)

1 − Φ(0)
=

2

𝜎
∅ (

𝑢𝑖

𝜎
) = 2(2𝜋𝜎2)−

1

2𝑒𝑥𝑝 (−
𝑢𝑖

2

2𝜎2
) , 𝑢𝑖 ≥ 0 
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Another way of thinking about this, is that we treat the inefficiency effect 𝑢𝑖 as a folded 

zero-mean normal distribution (as the absolute value of a normal distribution). What this means 

is that, if a variable 𝑊 is normally distributed, that is 𝑤~𝑁(𝜇, 𝜎𝑤
2 ) and 𝑍 possesses a folded 

normal distribution, described as 𝑍 = |𝑊| (Kumbhakar et al., 2015) then the density function 

is expressed as 

𝑓(𝑧) = (
1

𝜎𝑤
) [∅ (

𝑧 − 𝜇

𝜎𝑤
) + ∅ (

𝑧 + 𝜇

𝜎𝑤
)] , 𝑧 ≥ 0 

Following from the half-normal model, assuming that 𝜇 = 0, we may summarize the 

above equation by saying that, the folded normal density function is the same for both 

formulations, that is to say, the two results are the same across the assumptions and hence either 

can be used in applied econometrics.  

 

INEFFICIENCY EFFECTS AND CHOICE OF ESTIMATION 

 

The Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) provides a technique for generating parameters 

of probability distribution that best describe observed dataset, this is done by maximizing a 

likelihood function so that, the observed observations are most probable. This method enables 

either formulation of a regression path or determination of covariance matrix of estimates. If 

our observed data is assumed to be independent and identically (𝑖𝑖𝑑) sample: 𝑋1, 𝑋2, … , 𝑋𝑛, it 

implies that, they should either have the same probability mass function (data is discrete) or 

the same probability density function (data is continuous). Using notation 𝑓(𝑋|𝜃) to denote the 

pdf, two notations are often applied. Firstly, we impose condition on 𝜃 to show that the 

likelihood of different values of variable 𝑋 depends on values of our parameter and secondly, 

we use 𝑓 for both discrete and continuous distributions (Yan, 2020). In case of discrete 

distribution, the likelihood is synonym with joint probability of observed data and with 

continuous distribution, likelihood is the joint probability density of observed data. Thus, the 

likelihood of all the data is the product of the likelihood of each dataset. Algebraically, the 

likelihood in this case given the parameter 𝜃 becomes 

𝐿(𝜃) = ∏ 𝑓(𝑋𝑖|𝜃)

𝑛

𝑖=1

 

 

The Likelihood-Maximization Problem 

Suppose that, the random variables 𝑋1, … , 𝑋𝑛 form a random sample from a distribution 

𝑓(𝑥|𝜃): if 𝑋 is continuous stochastic variable, 𝑓(𝑥|𝜃) is the pdf and if 𝑋 is discrete stochastic 

variable, 𝑓(𝑥|𝜃) is the pmf. Using a given symbol to indicate that the distribution also depends 

on a parameter 𝜃, the 𝜃 could be a real-valued unknown parameter or a vector of parameters. 

For observed random sample 𝑥1, … , 𝑥𝑛, we define 𝑓(𝑥1, … , 𝑥𝑛|𝜃) = 𝑓(𝑥1|𝜃), … , 𝑓(𝑥𝑛|𝜃). If 

𝑓(𝑥|𝜃) is the pdf, 𝑓(𝑥1, … , 𝑥𝑛|𝜃) is the joint density function; if 𝑓(𝑥|𝜃) is pmf, 𝑓(𝑥1, … , 𝑥𝑛|𝜃) 

is the joint probability. Now we refer to 𝑓(𝑥1, … , 𝑥𝑛|𝜃) as the likelihood function. We note that 

the likelihood function depends on the unknown parameter 𝜃 and is often described by 𝐿(𝜃). 

Assuming that, the observed random sample 𝑥1, … , 𝑥𝑛 comes from discrete distribution and if 

an estimate of 𝜃 should be selected, we will not consider any value of 𝜃 for which it would 

have been impossible to obtain the dataset 𝑥1, … , 𝑥𝑛 which, has been observed. Further consider 

that, the probability 𝑓(𝑥1, … , 𝑥𝑛|𝜃) of obtaining the actual observed data 𝑥1, … , 𝑥𝑛 is high if 𝜃 

has a given value i.e. 𝜃 = 𝜃0 and is small for every other value of 𝜃, we will estimate the value 

to be 𝜃0. Suppose that, our sample comes from a continuous distribution, it would again be 

natural to find a value of 𝜃 for which the probability density 𝑓(𝑥1, … , 𝑥𝑛|𝜃) is large and use 
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this value as an estimate of 𝜃. For any given observed data 𝑥1, … , 𝑥𝑛, we are reminded by this 

principle to consider a value of 𝜃 for which, the likelihood function 𝐿(𝜃) is maximum and then 

use this value as an estimate of 𝜃. The meaning of maximum likelihood is as follows. We select 

the parameter which makes the likelihood of having the obtained data at hand, maximum. With 

discrete distributions, the likelihood is the same as the probability. We select the parameter for 

the density which, maximizes the probability of the data coming from it. If we have observed 

values, then the estimate takes a particular numerical value which becomes the maximum 

likelihood estimator. The MLE is about how to maximize the likelihood function 𝐿(𝜃) with 

respect to the unknown parameter 𝜃. Maximizing 𝐿(𝜃)is equivalent to maximizing log 𝐿(𝜃)) 

because log is a monotonic increasing function. We define 𝑙𝑜𝑔𝐿(𝜃)) as log likelihood function, 

denoted as 𝑙(𝜃). By maximizing 𝑙(𝜃) with respect to 𝜃 yields the ML estimation of the form 

using the approximation (Zheng, 2018) 

𝑙(𝜃) = 𝑙𝑜𝑔𝐿(𝜃) = 𝑙𝑜𝑔 ∏ 𝑓(𝑋1|𝜃) = ∑ 𝑙𝑜𝑔𝑓(𝑋1|𝜃)

𝑛

𝑖=1

𝑛

𝑖=1

 

 

ESTIMATION METHODS 

 

Normal Half-Normal Model by MLE 

In the following section, we provided detailed discussion on the ML estimation with 

distributional assumptions on 𝑢𝑖 and proceed as follows. Maintaining for independence of the 

error terms 𝑣𝑖 (normal error distributed, we express the joint density as a product of individual 

functions. In such a case 

𝑓(𝑢, 𝑣) = 𝑓(𝑢) × 𝑓(𝑣) =
2

𝜎𝑢𝜎𝑣2𝜋
𝑒𝑥𝑝 (−

𝑢2

2𝜎𝑢
2

−
𝑣2

2𝜎𝑣
2

) 

To be able to estimate the density of the error components: 𝜖 = 𝑣 − 𝑢, we would 

calculate the joint density of 𝑓(𝑢, 𝜖). We denote this by 

𝑓(𝜖) = ∫ 𝑓(𝑢, 𝜖)𝑑𝑢 =
2

𝜎
𝜙(𝜖𝜎−1)

∞

0

[1 − Φ(𝜖 ⋋ 𝜎−1)] 

⋋= 𝜎𝑢/𝜎𝑣 and 𝜎2 = 𝜎𝑢
2 + 𝜎𝑣

2. 

 

In obtaining the density distribution of 𝜖, we may rewrite the above equation as 

𝐸(𝜖) = 𝐸(𝑣 − 𝑢) = 𝐸(−𝑢) = −
√2

√𝜋
𝜎𝑢 

Therefore, a good estimator for the variance (𝜖) of the total observation becomes.  

𝑉𝑎𝑟(𝜖) = 𝜎𝜖
2 = 𝑉𝑎𝑟(𝑢) + 𝑉𝑎𝑟(𝑣) = (

𝜋 − 2

𝜋
) 𝜎𝑢

2 + 𝜎𝑣
2 

The estimator for the variance of the total [𝜎2 = 𝜎𝑢
2 + 𝜎𝑣

2] value, relies on data coming 

from simple random sampling (the observations are i.i.d.) Thus, the essential assumption of the 

robust variance estimator is that, the observations are independently selected from the same 

population (Huber, 1967). Finally, the log-likelihood function based on 𝑣𝑖  ~𝑁(0; 𝜎𝑣
2) and 

𝑢𝑖~𝑁+(0; 𝜎𝑢
2) becomes 

𝐼𝑛𝐿(𝜖| ⋋, 𝜎2) = 𝑛𝐼𝑛 (
1

𝜎
) + ∑ 𝐼𝑛[1 − 𝑔Φ(𝜖𝑖 ⋋ 𝜎−1)] −

1

2𝜎2
∑ 𝜖𝑖

2

𝑛

𝑖=1

𝑛

𝑖=1

 

𝜖𝑖 = 𝑙𝑜𝑔𝑦𝑖 − 𝛽𝑙𝑜𝑔𝑥𝑖 
Having computed the estimates, the variance components are recovered for conducting 

hypothesis tests. In general 

�̂�, �̂�2 = �̂�𝑢
2 + �̂�𝑣

2 and ⋋̂= �̂�𝑢/�̂�𝑣 
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�̂�𝑣
2 =

�̂�2

1 +⋋̂2
,  �̂�𝑢

2 = �̂�2 −
�̂�2

1 +⋋̂2
 

 

Estimates of Individual Inefficiencies 

In the following section, we first introduce the inefficiency effects, this is followed by 

detailed discussion on ML estimation. Two random variables, 𝑣𝑖~𝑁(0; 𝜎𝑣
2) and 𝑢𝑖~𝑁+(0; 𝜎𝑢

2) 

are identified by imposing parametric distribution (Aigner et al., 1977; Meeusen & van den 

Broeck, 1977). Once the distributional assumptions are made, the log-likelihood function of 

the model is derived and numerical maximization procedures are used to obtain the ML of the 

model parameters. The technically inefficiency ratio 𝑇𝐸𝑖 can be obtained as exponential 

conditional expectation of −𝑢, given the error component 𝜖: 𝑇𝐸𝑖 = 𝑒𝐸(𝑢𝑖|𝜖𝑖). On the basis of 

the conditional density of 𝑢 given 𝜖, the model which we are estimating is expressed as 

𝑓(𝑢|𝜖) =
𝑓(𝑢, 𝜖)

𝑓(𝜖)
=

1

𝜎∗√2𝜋
= 𝑒𝑥𝑝 (−

(𝑢 − 𝑢∗)2

2𝜎∗2
) [1 − Φ (−

𝑢∗

𝜎∗
)]

−1

 

The distribution of 𝑢 conditional on 𝜖 is expressed as 𝑁+(𝜇∗, 𝜎∗) so that 

𝜇∗ = −
𝜖𝜎𝑢

2

𝜎2
= −𝜖𝛾, 𝜎∗2 =

𝜎𝑢
2𝜎𝑣

2

𝜎2
= 𝜎2

𝜎𝑢
2(𝜎2 − 𝜎𝑢

2)

(𝜎2)2
= 𝜎2𝛾(1 − 𝛾) 

Where 𝛾 = 𝜎𝑢
2/(𝜎𝑢

2 + 𝜎𝑣
2) is the fraction of the variance of the inefficiency to the total variance 

and given the distribution of 𝑢|𝜖, the expected value, 𝐸(𝑢|𝜖) may be applied as the point 

estimator for 𝑢𝑖 (Jondrow et al., 1982). Thus, 

�̂�𝑖 = 𝐸(𝑢|𝜖) = (
𝜎 ⋋

1 +⋋2
) (𝑧𝑖 +

𝜙(𝑧𝑖)

𝛷(𝑧𝑖)
) , 𝑧𝑖 =

−𝜖 ⋋

𝜎
 

Where 𝜙 and Φ are defined respectively for the standard normal. In order to obtain firm-

specific technical inefficiencies from 𝑒𝑥𝑝[−𝐸(𝑢|𝜖)], Battese and Coelli (1988) proposed 

alternative estimator. In this case 

𝑇�̂�𝑖 = 𝐸(exp(−𝑢𝑖) |𝜖𝑖) = [Φ (
𝑢𝑖

∗

𝜎∗
− 𝜎∗) /Φ (

𝑢𝑖
∗

𝜎∗
)] 𝑒𝑥𝑝 (

𝜎∗
2

2
− 𝑢𝑖 ∗) 

 

𝑢𝑖
∗ = −(𝑙𝑜𝑔𝑦𝑖 − 𝑥, 𝛽)𝜎𝑢

2/𝜎2 and 𝜎∗
2 = 𝜎𝑢

2𝜎𝑣
2/𝜎2 

We note that  

𝑒𝑥𝑝[−𝐸(𝑢|𝜖)] ≠ 𝐸(𝑒𝑥𝑝(−𝑢𝑖|𝜖𝑖)) 

Although both estimators are unbiased, they are inconsistent because 𝑉𝑎𝑟(𝑢�̂�) ≠ 0 for 𝑁 → ∞ 

 

Non-Parametric Model 

Non-parametric models involve techniques which do not rely on data belonging to any 

particular family of probability distribution but involve methods which are distribution-free, 

which do not rely on assumptions that, the data are drawn from a given parametric family of 

probability distributions and the statistics is defined to be a function of a sample without] 

dependency on a parameter (Corder et al., 2014; Hollander et al., 2014) 

 

Corrected Ordinary Least Squares 

From the aforementioned approach, Kumbhakar et al. (2015) specified the following 

deterministic frontier model.  

𝐼𝑛𝑦𝑖 = 𝐼𝑛𝑦𝑖
∗ − 𝑢𝑖, 𝑢𝑖 ≥ 0 

𝐼𝑛𝑦𝑖
∗ = 𝑓(𝑥𝑖; 𝛽) 

We note that, this model excluded the random error 𝑣𝑖, because it represents shocks 

outside the control of the firm and it is not likely to be related to the inefficiency effects 𝑢𝑖 and 
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therefore non-stochastic (Forsund & Hjalmarsson, 1978). Separating the intercept from the rest 

of the function, the following model was adopted 

𝐼𝑛𝑦𝑖 = 𝛽0 + �̃�𝑖
/
𝛽 − 𝑢𝑖 

Where, the 𝑥𝑖 is a vector of factor inputs including uncontrolled climate variables, which, may 

be in logs (log-linear function) either formulated in Cobb-Douglas or cross-product terms as 

with translog form. The idea is to obtain estimated frontier function bound observations (𝐼𝑛𝑦𝑖) 

from above, by generating consistent estimates of the slope coefficients and the estimated 

production function shifted upward, such that the function after the adjustment bounds all the 

observations below. The model is estimated using the following procedures: Firstly, the 

ordinary least squares is conducted on 𝐼𝑛𝑦𝑖, using a constant of one and the following model 

obtained 

𝐼𝑛𝑦𝑖 = �̂�0 + �̃�𝑖
/
�̂� + �̂�𝑖 

where �̂�𝑖 represent the corresponding residuals and we obtain the zero-mean OLS regression 

residuals �̂�𝑖 as 

�̂�𝑖 = 𝐼𝑛𝑦𝑖 − [�̂�0 + �̃�𝑖
/
�̂�] 

�̂�𝑖 > 0, �̂�𝑖 = 0 �̂�𝑖 < 0 

In what follows, the OLS intercept is then adjusted upwards by amount of 𝑚𝑎𝑥{�̂�𝑖} in 

order that the adjusted function bounds observations from above. Following from this 

(Kumbhakar et al., 2015) the residuals is modelled as 

�̂�𝑖 = 𝐼𝑛𝑦𝑖 − {[�̂�0 + 𝑚𝑎𝑥{�̂�𝑖}] + �̃�𝑖
/
�̂�} ≤ 0 

where {[�̂�0 + 𝑚𝑎𝑥{�̂�𝑖}] + �̃�𝑖
/
�̂�} is the estimated function and the inefficiency effects are 

estimated by the equation 

�̂�𝑖 ≡ −(�̂�𝑖 − 𝑚𝑎𝑥{�̂�𝑖}) ≥ 0 

such that �̂�𝑖 becomes the estimated inefficiency for 𝐼𝑛𝑦𝑖 = 𝛽0 + �̃�𝑖
/
𝛽 − 𝑢𝑖. Therefore, 

technical efficiency of each observation can then be computed as 

𝑇𝐸𝑖 = 𝑒𝑥𝑝(−�̂�𝑖) for 𝐼𝑛𝑦𝑖 = 𝛽0 + �̃�𝑖
/
𝛽 − 𝑢𝑖  

 

Skewness Test on Ordinary Least Squares Residuals 

Schmidt and Lin (1984) favoured an OLS residual test to determine the validity of the 

model’s stochastic frontier specification, to serve as pre-test before maximum likelihood 

estimation is conducted. The principle of the test is that, given a production stochastic frontier 

model, 𝐼𝑛𝑦𝑖 = 𝑓(𝑥𝑖 , 𝛽) + 𝜖𝑖 and 𝜖𝑖 = 𝑣𝑖 − 𝑢𝑖,, 𝑢𝑖, ≥ 0,where 𝜖𝑖 is the composed error term and 

𝑣𝑖 distributed symmetrically around mean zero, the residuals from the corresponding OLS 

estimation must skew to the left, reflecting that the slope coefficients of the OLS estimation 

are consistent with those of the corresponding stochastic frontier model, regardless of the 

distribution for 𝑢𝑖, after the pre-testing. Thus, a test of the null hypothesis of no skewness as 

opposed to the alternative hypothesis can then be conducted using the OLS residuals. Given 

that, the estimated skewness possesses the expected sign, the rejection of the hull hypothesis 

provides a rule of thumb for the presence of one-sided error. In the aforementioned scenario, 

Schmidt and Lin (1984) also proposed a sample-moment related statistic for skewness test, the 

√𝛽𝑖 test statistic. Thus,  

√𝛽𝑖 =
𝑚3

𝑚2√𝑚2

 

where 𝑚2 and 𝑚3 represent the second and the third sample moments of OLS residual 

respectively. Thus 

𝑚2 =
∑(𝑥 − �̅�)2

𝑛
, 𝑚3 =

∑(𝑥 − �̅�)3

𝑛
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In this case √𝛽𝑖
̂

< 0 would then provide evidence that the OLS residuals are within 

range. The distribution of √𝛽𝑖 is assumed to be nonstandard and its critical values are tabulated 

in studies including D’Agostino & Pearson (1973). In addition to the direction of skewness, 

Coelli (1995) however suggested a variant of this test and observed that, under the null 

hypothesis of no skewness, 𝑚3 of the OLS residuals is asymptotically distributed as a normal 

random variable with mean 0 and variance 6𝑚2
3/𝑁. It can be shown that  

𝑀3𝑇 =
𝑚3

√6𝑚2
3/𝑁

 

which possess an asymptotic distribution of a standard normal random variable. The advantage 

of the above test statistic is that, the critical values of the distribution are available and can be 

recovered. It should be noted that, in the context of the √𝛽𝑖 test the one-sided error specification 

which represents technical inefficiency can be estimated for each observation using the ML 

estimation without imposing a specific distributional assumption. The distribution-free 

assumption otherwise referred as the thick frontier approach (Berger & Humphrey, 1991), 

which requires a full specification of the model’s parameters, has improved the stochastic 

frontier analysis with consistent results, since the residual test serves as a screening device in 

this case.  
 

EMPIRICAL LITERATURE 

Thus, in this section we examine how empirically the two approaches are estimated. The 

paper relied on the dataset of Kumbhakar et al. (2015), which contained data on 196 dairy farms 

including the amount of milk produced (output) and the inputs including labour hours, feed, 

number of cows and land size of the farms for the illustrations of this paper.  

 

Non-Parametric Model  

Assessing the (Likely) Presence of Skewness 

The table below shows evidence of a negative skewness using the point estimate statistic 

√𝛽1 to obtain the summary statistic of the OLS residuals 𝑒. The statistic labelled “skewness” 

in column 4 of Table1 below, with a value equal -0.7377269. The negative sign shows that, the 

OLS residuals are extremely skewed to the left as consistent with a production frontier model.  

 

Table 1: OLS Residuals 

Residuals 

 Percentiles Smallest   

1% -0.4861149 -0.5450444   

5% -0.2731016 -0.4861149   

10% -0.1894513 -0.3645601 Obs 196 

25% -0.0821035 -0.3447073 Sum of Wgt. 196 

50% 0.0101231  Mean -3.86e-10 

  Largest Std Dev 0.1439801 

75% 0.0994077 0.2340004   

90% 0.1711118 0.2554969 Variance 0.0207303 

95% 0.2116255 0.2558538 Skewness -0.7377269 

99% 0.2558538 0.2701932 Kurtosis 3.92576 
Source: Kumbhakar et al., 2015 

 

In order to establish otherwise statistical significance of this statistic, Kumbhakar et al. 

(2015) applied the unaltered test proposed by D’Agostino et al. (1990) – a test for normality 
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based on skewness and another based on kurtosis and then combines the two tests into an 

overall test statistic. The skewness/kurtosis tests for normality are presented in Table 2 below. 

 

Table 2: Skewness/Kurtosis Tests for Normality 

    …………… 

joint 

…………….. 

Variable Obs Pr(Skewness) Pr(Kurtosis) Chi2(2) Prob> chi2 

𝑒 196 0.0001 0.0258 20.62 0.0000 

Source: Kumbhakar et al., 2015 

 

A positive value for the kurtosis (peakedness) with a value equal to 0.0258 is within 

limits as proposed by Bryne (2010), that is, obtaining normality thresholds between -7 to +7 is 

acceptable and this indicates a distribution more peaked than normal. From the normality test, 

since the p-value is less than 0.01, we conclude that the null hypothesis of no skewness is 

rejected, that is there is evidence of left-skewed error distribution which is statistically different 

from zero. The p-value provides evidence that, there is no need to consider the specification of 

the model and we proceed to estimate the stochastic frontier model. The M3T statistic proposed 

by Coelli (1995) was computed to confirm the rejection of the null hypothesis of no skewness 

on the OLS residuals. On the basis of the estimated statistic which is equal to -4.216, the null 

hypothesis is rejected.  

 

Table 3: Non-Parametric Model: Standard OLS Estimation of the Model 

𝑙𝑛𝑦𝑖 Coefficient Std Err 𝑡 𝜌  [95% Conf Interval] 

𝑙𝑛𝑙𝑎𝑏𝑜𝑢𝑟 0.1254299 0.0501422 2.50 0.013 0.0265262 0.224336 

𝑙𝑛𝑓𝑒𝑒𝑑 0.1677741 0.0433321 3.87 0.000 0.0823031 0.253245 

𝑙𝑛𝑐𝑎𝑡𝑡𝑙𝑒 0.7710345 0.0664727 11.60 0.000 0.6399196 0.9021493 

𝑙𝑛𝑙𝑎𝑛𝑑 0.0193328 0.0448032 0.43 0.667 -0.0690398 0.1077055 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 7.272442 0.5551692 13.10 0.000 6.177392 8.367492 

Source: Kumbhakar et al., 2015 

 

Parametric Model 

Half-Normal Model 

In the second estimation of the stochastic frontier model, a half-normal distribution for 

one-sided error term was assumed and following results were obtained as shown in Table 4 

below. 

 

Table 4: Parametric Model: Half-Normal Model 

𝑙𝑛𝑦𝑖 Coefficient Std Err 𝑡 𝜌  [95% Conf Interval] 

𝑙𝑛𝑙𝑎𝑏𝑜𝑢𝑟 0.102653 0.0427101 2.40 0.016 0.0189427 0.1863632 

𝑙𝑛𝑓𝑒𝑒𝑑 0.155628 0.0372683 4.18 0.000 0.0825836 0.2286725 

𝑙𝑛𝑐𝑎𝑡𝑡𝑙𝑒 0.7546799 0.0574825 13.13 0.000 0.6420163 0.8673435 

𝑙𝑛𝑙𝑎𝑛𝑑 0.0360424 0.0386583 0.93 0.351 -0.0397265 0.1118114 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 7.725265 0.478893 16.13 0.000 6.786651 8.663878 

𝜎𝑢  -3.133122 0.2187722 -14.32 0.000 -3.561908 -2.704336 

𝜎𝑣 -5.336009 0.445821 -12.06 0.000 -6.204353 -4.468564 

𝜎𝑢
2 0.435815 0.0095344 4.75 0.000 0.0283846 0.0669147 

𝜎𝑣
2 0.004815 0.0021311 2.26 0.024 0.0020224 0.0114638 

Source: Kumbhakar et al., 2015 
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The estimated coefficients (input variables) on the frontier function in Table 4 appear to 

be very close to those of the OLS estimates in Table 3. All inputs variables are positively related 

to output and statistically significant at the 5 percent except land. The output elasticity of cattle 

in the OLS estimation is about 77% higher than a value equal to 75% in the parametric model. 

Note that, in these models the returns to scale are greater than 1 indicating increasing returns 

and the estimates for the OLS model is larger compared with the parametric model. The 

estimation results provided beneath Table 4 show that the variance parameters were 

parameterized as exponential function equation. Hence the estimated values of the variance 

parameters of 𝜎𝑣
2 and 𝜎𝑢

2 are obtained by σ̂v
2 = exp(−5.336009) = 0.0048 and σ̂u

2 =
exp(−3.133122) = 0.044.  

 

A Likelihood Ratio (LR) Test of Inefficiency 

Given a half-normal model, the LR test is used to test the null hypothesis 𝜎𝑢
2 = 0, from 

the stochastic frontier model, the one-sided error specification which absorbed the technical 

inefficiency. The existence of this sided-error was tested and if no evidence of the one-sided-

error is observed then the OLS estimation is adopted. Kumbhakar et al. (2015) used the LR test 

statistic −2[𝐿(𝐻0) − 𝐿(𝐻1)] with a 1 degree of freedom because 𝜎𝑢
2 = 0 and obtained the 

following results. 

 

Table 5: Critical values of the mixed chi-square distribution significance level 

Df 0.25 0.1 0.05 0.025 0.01 0.005 0.001 

1 0.455 1.642 2,705 3.841 5.412 6.635 9.500 
Source: Table 1, Kodde and Palm (1986, Econometrica) 

 

The table shows that the critical value of the statistic at the 1 percent significance level 

equal to 5.412 and given the model’s test statistic of 16.426, the null hypothesis on technical 

inefficiency was rejected (Kumbhakar et al., 2015). 

 

CONCLUSION 

The difference between the approaches is that the parametric includes inefficiency and 

makes distributional assumptions on the error components. And if there is no inefficiency, the 

stochastic frontier model reduces to be estimated using the least squares method with free-

assumption (normality assumption) on the error vector. This result then enables us to conduct 

the likelihood ratio test in order to investigate the presence of inefficiency, so that the null 

hypothesis of no inefficiency may be rejected. The non parametric on the other hand includes 

inefficiency and makes no assumptions. It provides the formular for constructing the residual 

bound for the inefficiency index, skewness and kurtosis tests for normality upon which the 

rejection of the null hypothesis provides evidence for the existence of the one-sided error. 

Following from this, there is no need to consider the specification of the model. Thanks for the 

larger flexibility of the non-parametric model, which provided straightforward estimates of the 

one-sided error compared with parametric model in ML. Thus, one might proceed by projecting 

the alternative for providing robust estimates and the processes of pre-test statistic for skewness 

of OLS residuals before ML estimation. From the non-parametric model, it thus appears the 

parametric model is not optimum (lack of fit) although in practice, it may provide quite good 

coverage for their distribution of observed values. The findings of this paper draw attention to 

the vital importance of adopting the non-parametric model owing to its flexibility, in particular 

obtaining larger input estimates, compared with the parametric model as shown in Tables 3 and 

4 respectively. There is a new understanding that, the free-approach can speed up the estimation 

processes by providing more robust results. The consistent results may be as a result of the fact 

that parameter estimates obtained by the least squares method possess certain optimal 
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properties and the computational procedures are fairly simple compared with other econometric 

techniques. Seizing these comparative analyses, the paper also draw attention to test statistic to 

test the skewness of the OLS residuals and providing a “rule of thumb” for rejecting the null 

hypothesis. The paper concluded that, a more flexible free approach reduces the computational 

challenges associated with the parametric and the proposed tests statistics with available critical 

values also guarantee strong acceptance and application of the alternative approach owing to 

drawing quick reference with respect to inefficiency effects. 
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