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ABSTRACT

The Hadwiger conjecture (see [1] or [2]) is well known. The Hadwiger conjecture states that
every graph G satisfies y(G) < 5(G) [where »(G) is the hadwiger number of G (i.e. the
maximum of p such that G is contractible to the complete graph Kp), and x(G) is the chromatic
number of G. We recall (see [2]) that the famous four-color problem is a special case of the
Hadwiger conjecture]. In this paper, we give the original reformulation of the Hadwiger
conjecture and the algebraic reformulation of the Hadwiger conjecture. The algebraic
reformulation of the Hadwiger conjecture (which is based on the original reformulation of the
Hadwiger conjecture) shows that the proof of this conjecture is strongly linked to a very small
class of graphs.
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PRELIMINARIES
Recall that in a graph G = [V(G), E(G), x(G),w(G), a(G), n(G)]. V(G) is the set of ver-

tices, E((7) is the set of edges, x(() is the chromatic number [ i.e. the smallest number
of colors needed to color all vertices of G such that two adjacent vertices do not receive the
same color ] w(G) is the cligue number of G [i.c. the size of a largest cligue of G. Recall
that a graph F' is a subgraph of G, if V(F) C V(G) and E(F) C E(G). We say that a
ograph F'is an induced subgraph of G by Z. it F' is a subgraph of G such that V(F) = Z,
Z C V(@), and for any pair of vertices x and y of F' (note that  and y are in V(F) = Z),
xy is an edge of F if and only if zy is an edge of G. For X C V(G), G\ X denotes the
subgraph of G induced by V(G)\ X. A cligue of G is a subgraph of GG that is complete;
such a subgraph is necessarily an induced subgraph (recall that a graph K is complete if
every pair of vertices of K is an edge of K) ]._ () is the stability number of G [ ie. the
size of a largest stable set of G. Recall that a stable set of a graph G is a set of vertices
of ¢ that induces a subgraph with no edges ]: n(G) is the hadwiger number of G and is
the maximum of p such that G is contractible to the complete graph K, [ recall that, if e
is an edge of G incident to o and y, we can obtain a new graph from & by removing the
edge e and identifying x and y so that the resulting vertex is incident to all those edges
(other than e) originally incident to x or to y. This is called contracting the edge e. If
a graph F' can be obtained from ' by a succession of such edge-contractions, then, (7 is
contractible to F'. The maximum of p such that & is contractible to the complete graph K,
is the hadwiger number of GG, and is denoted by n(G) ] The Hadwiger conjecture states
that every graph G is n(') colorable [ L.e. we can color all vertices of G with n(() colors

such that two adjacent vertices do not receive the same color ] In this paper, we introduce
some definitions that are not standard in the literature of Graph Theory, and, using these
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non-standard definitions coupled with some properties, we give the original reformulation of
the Hadwiger conjecture and the algebraic reformulation of the Hadwiger conjecture. The
algebraic reformulation of the Hadwiger conjecture (which is based on the original refor-
mulation of the Hadwiger conjecture) shows that the proof of this conjecture is strongly
linked to a very small class of graphs. That being said, all results of this paper are original,
and therefore, are not related to strong investigations that have been done on the Hadwiger
conjecture in the past by other authors. It is easy to see.
Assertion 0.0. Let G be a graph and F be a subgraph of G. Then w(G) < x(G) and
n(F) < n(G). O

[t is very easy to prove that:
Assertion 0.1. The Hadwiger conjecture is true for every graph G such that
0<x(G)<2. 0

That being said, this paper is divided into two sections. In Section. I, we recall standard
definitions known in Graph Theory, and we define the graph parameter denoted by 7 [ the

eraph parameter 7 is called the hadwiger index ]._ and, via the parameter T, we give the
original reformulation of the Hadwiger conjecture. This original reformulation is simple
and crucial for the algebraic reformulation of the Hadwiger conjecture. In Section.2, we
use the original reformulation of the Hadwiger conjecture to introduce uniform graphs
and relative subgraphs [ uniform graphs and relative subgraphs are crucial for the algebraic

reformulation of the Hadwiger conjecture ], and we give some elementary properties of these

graphs; in Section. 2, we also define another graph parameter denoted by a [ the graph pa-
rameter a is called the hadwiger caliber, and is related to the hadwiger index 7 defined in
Section. 1 ], and using the graph parameter a, we give the algebraic reformulation of the
Hadwiger conjecture. The algebraic reformulation of the Hadwiger conjecture (which is
based on the original reformulation of the Hadwiger conjecture) shows that the proof of this
conjecture is strongly linked to a very small class of graphs called uniform graphs. Here,
every graph is finite, is simple and undirected.

LTHEHADWIGER INDEX OF A GRAPHAND THE ORI -
GINAL REFORMULATION OF THE HADWIGER CONJECTURE

In this section, we introduce some important definitions that are not standard. In particular,
we define a graph parameter called the hadwiger index [and denoted by 7], and we use it
to give the original reformulation of the Hadwiger conjecture.

Definition 1.0. (frue pal). We say that a graph G is a true pal of a graph F, if F
is a subgraph of G and x(F) = x(G). trpl(F) denotes the set of all true pals of F; so
G € trpl(F) means G is a true pal of F' .

Definition 1.1. (complete w(Q)-partite graph and Q). We recall that a graph @ is a
complete w(Q)-partite graph, if there exists a partition Z(Q) = {Y1...., Y )} of V(Q)
into w(Q) stable set(s), such that x € Y; € Z(Q), y € ¥ € Z(Q) and j # &k, = z and
y are adjacent in (. € denotes the set of all complete w(€Q))-partite graphs; so Q € Q
means () is a complete w(Q)-partite graph. For example, if G is a complete w(G)-partite
graph with w(G) € {0,1,2,3,4,.....;ete..}. then G € Q. More generally, G is a com-
plete w(G)-partite graph with w(G) > 0. if and only if , G € Q. It is immediate that

394


about:blank

European Journal of Science, Innovation and Technology
www.ejsit-journal.com

Y(Q) = w(Q) for all Q € Q [ it is also immediate that, for every () € 2, the partition

Z(Q) = {Y1..... Y g} of V(Q) into w(Q) stable set(s) is canonical }
Now, using the previous definitions, then the following Assertion becomes immediate.

Assertion 1.2. Let G be a graph. Then, there exists a graph P € Q) such that
P is a true pal of G [i.e.  there exists P € () such that P € trpl(G) .

Proof. Indeed, let G h{‘ a graph and let Z(G) = {Y1,...,Y (¢} be a partition of V(G)
into y(G) stable set(s) [it is immediate that such a partlhon =(G) cxiatﬂ] Now let ) be
a graph defined as follow.. (i) V(Q) = V(G). (ii) 2(Q) = {Y1.....Yy o} = Z(G) is a

partition of V(Q) into y(G) stable set(s) such that x €Y e (Q} €Y, € Z(Q) and

i # k.= x and y are adjacent in (). Clearly @ € 2 (Q} (Q) X(G), and G is

visibly a subgraph of @; observe that ) is a true pal c-f (" such that @ € Q [because G 1s

a subgraph of @ and x(Q) = x(G) and @ € Q). Now put = P; Assertion 1.2 follows.[]
Using Assertion 1.2, let us define.

Definition 1.3. (parent). We say that a graph P is a parent of a graph F | if P €
Q) trpl(F). In other words, a graph P is a parent of F, if P is a complete w(P)-partite
graph and P is also a true pal of F' [note that such a P clearly exists, via Assertion 1.2].
parent(F) denotes the set of all parents of I'; so P € parent(F) means P is a parent of

F.

The following assertion is an immediate consequence of Definition 1.3 and Assertion 1.2.

Assertion 1.4. Let G be a graph. Then, there erists a graph P which is a par-
ent of G [ i.e. there exists a graph P such that P € parent(G) |.
Proof. Immediate [use Definition 1.3 and Assertion 1.2]. O

Using the definition of a parent [ use Definition 1.3, the definition of a true pal [use
Definition 1.0}, the definition of 2 [use Definition 1.1], and the definition of (&) (use Pre-
liminary), then the following two assertions are immediate.

Assertion 1.5. Let G be a graph. Then, there exists a graph S such that G is a
true pal of S and n(S) is minimum for this property. O

Assertion 1.6. Let F' be a graph and let P € parent(F'); then x(F) = x(P) = w(P).
[

Now, we define the hadwiger index and a son.

Definitions 1.7. (the hadwiger index and a son). Let G be a graph and put A(G) =

{H.G € trpl(H)} |[clearly A(G) is the set of all graphs H, such that G is a true pal of

H]. Then the hadwiger index of G is denoted by 7(G), where 7(G) = Flﬂﬁ")n(Fk and
€

a son of G is a graph § such that S € A(G) and n(S) = 7(G) | using Assertion 1.5,
then it becomes immediate to see that for every graph G, 7(G) exists and is well defined.
Moreover, it is also immediate to see that a son S of ¢ exists and is not necessarily unique

Now using Definitions 1.7, then the following Proposition is immediate.
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Proposition 1.7, Let (K,G,F,P), where K is a complete graph, G € Q, F s
a graph and P € parent(F). We have the following elementary properties.

(1.7.1). If w(G) < 1, then w(G) = x(G) = n(G) = 7(G).

(1L.72) wK)=x(K)=nK)=r1(K).

(1.73). w(G) = 7(G).

(L.7.4). If G € trpl(F), then 7(G) < 7(F).

(1.75). 7(P) < r(F). O

Proof. Properties (1.7°.1) and (1.7.2) are immediate. Property (1.7'.3) is very easy [ indeed
recall that G € Q, and clearly x(G) = w(G). Now put A(G) = {H;G € trpl(H)} and
let K’ be a complete graph such that w(K') = w(G) and V(K") C V(G); clearly K’ is a
stubgraph of ¢ and

X(G) = w(G) = x(K') = w(K') = n(K') = 7(K") (1.0).

In particular K’ is a subgraph of G with x(G) = x(K'), and therefore, G is a true pale of
K';so K" € A(G) and clearly

7(G) < n(K') 1

(1.1).
Observe that w(G) = (K") [use (1.0)] and inequality (1.1) immediately becomes 7(G) <
w(@). Property (1.7'.3) follows ]. Property (1.7.4) is obvious [ indeed put A(G) = {H:; G €
trpl(H)} and let S be a son F'; recalling that G € trpl(F), clearly G € trpl(S), so
S € A(G) and clearly

7(G) < n(S) (1.2)

Now observe that n(S) = 7(F') [because S is a son of F] and inequality (1.2) immediatly
becomes 7(G) < 7(F). Property (1.7°.4) follows |. Property (1.7°.5) is immediate [ in-
deed observe that P € parent(F) ( in particular P € trp(F)) and use Property (1.7".4)].
Proposition 1.7" follows.[]

Now the following Theorem is the original reformulation of the Hadwiger conjecture.

Theorem 1.8. (The original reformulation of the Hadwiger conjecture). The follow-
ing are equivalent.

(1) The Hadwiger conjecture is true (i.e. For every graph H, we have x(H) < n(H)).
(2)  For every graph F', we have x(F) < 7(F).

(3)  For every G € Q, we have w(G) = 7(G).

Proof. (1) = (2)]. Indeed let F be a graph and let S be a son of F, clearly x(S) < n(5):
now observing that y(S) = x(F) [since F' € trpl(S), by using the definition of a son S of
F] and n(S) = 7(F) [because S is a son of FJ, then the previous inequality immediately
becomes x(F) < 7(F).

(2) = (3)]. Let G € Q: in particular G is a graph and so x(G) < 7(G). Note x(G) = w(G)
[since G € Q] and the previous inequality becomes

w(G) < 7(G) (1.9).

Now observing that
w(G) = 7(6G) (1.4)

[remark that G € £ and use property (1.7’

[use (1.3) and (1.4)].

3) of Proposition 1.7, clearly w(G) = 7(G)
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(3) = (1)]. Let H be a graph and let P € parent(H ), then
T(P) < 7(H) (1.5)

[ use property (1.7.5) of Proposition 1.7']. Observe P € ) [since P € parent(H)] so
w(P) = 7(P) [because P € Q] and y(H) = x(P) = w(P) [since P € parent(H)|; clearly
T(P) = x(H) ( use the previous ) and inequality (1.5) becomes

X(H)<7(H) (1.6).
Since it is immediate that
T(H) < n(H) (1.7),
clearly
X(H) < 7(H)<n(H) (1.8)

[use (1.6) and (1.7)] and so x(H) < n(H) [use (1.8)]. O

We will nse Theorem 1.8 in Section.? to define uniform graphs which are crucial for
the algebraic reformulation of the Hadwiger conjecture. Now using the definition of the
hadwiger number 5 (use Preliminary) and the definition of the hadwiger index 7 (use Def-
initions 1.7) and Assertion 0.1, then the following assertion is trivial and we leave it to the
reader.
Assertion 1.9. We have the following three properties.
(1). The Hadwiger conjecture is true for every graph G' such that 0 < x(G') < 2 [
t.e. For every graph H such that 0 < y(H) < 2, we have x(H) < n(H) /.
(2)  For every graph F such that 0 < x(F) < 2, we have x(F) < 7(F).
(3)  For every G € () such that 0 < x(G) < 2, we have w(G) = 7(G). O

2.UNIFORM GRAPHS, RELATIVE SUBGRAPHS, THE HAD-
WIGER CALIBERAND SOME CONSEQUENCES : THE
ALGEBRAIC REFORMULATION OFTHE HADWIGER CONJECTURE

In this section, we use the original reformulation of the Hadwiger conjecture given by The-
orem 1.8 to introduce uniform graphs and relative subgraphs [ uniform graphs and relative
subgraphs are crucial for the algebraic reformulation of the Hadwiger conjecture |, and we
give some elementary properties of these graphs. In this section, we also define another
graph parameter denoted by a [ the graph parameter a is called the hadwiger caliber, and
is related to the hadwiger index defined in Section. 1 ], and using the graph parameter a cou-
pled with some properties, we give the algebraic reformuation of the Hadwiger conjecture.
The algebraic reformulation of the Hadwiger conjecture is based on the original reformu-
lation of the Hadwiger conjecture and shows that the proof of this conjecture is strongly
linked to a very small class of graphs mentioned above and called untform graphs. In this
section, the definition of true pal (use Definition 1.0), the denotation of € (use Definition
1.1), the definition of parent (use Definition 1.3), the definition of the hadwiger index 7
(use Definitions 1.7), and the definition of the hadwiger number n (use preliminary), are
fundamental and crucial. Now let us remark.

Remark 2.0. Let F be a graph and let P be a parent of F; then 7(P) < 7(F).
Proof. Immediate and is an obvious consequence of property (1.7".5) of Proposition 1.7".00
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Remark 2.1. Let K be a complete graph; then 7(K) = w(K) = y(K) = n(K).

Proof. Immediate and is an obvious consequence of property (1.7.2) of Proposition 1.7". O
Inspirated by Theorem 1.8, we are going to define a new class of graphs in (2 [called uni-

form graphs]: we will also define relative subgraphs, and we will present some properties

related to these graphs. These properties are elementary and curiously, are crucial for the

algebraic reformulation of the Hadwiger conjecture. Before, let us define.

Definition 2.2. [optimal coloration and O(G)].  An optimal coloration of a graph
G is a partition Z(G) = {Y1....,Y )} of V(G) into x(G) stable set(s) [where x(G) is
the chromatic number of G]; ©(G) denotes the set of all optimal colorations of G; so.
=Z(G) € ©(G) means Z(G) is an optimal coloration of GG

Definition 2.3. [The canonical coloration]. Let G be a graph and let Z(G) € O(G).
We say that =(G) is the canonical coloration of G, if and only if, ©(G) = {Z(G)} |
observe that such a canonical coloration does not always exist].

Using the denotation of ©(G) [ use Definition 2.2], then the following Assertion is im-
mediate.

Assertion 2.4. Let G € £ and let Z(G) € ©O(G). Then =Z(G) is the canonical
coloration of G [i.e. ©(G) = {=(G)}, by Definition 2.3] .
Proof. Immediate, by observing that G € 2. [J

So, let G € Q and let Z(G) € ©(G); then Assertion 2.4 clearly says that =((G) is the
canonical coloration of G [indeed, we have no choice, since ©(G) = {Z(G)}].

Definition 2.5. [Uniform graph/. Let G €  and let Z(G) be the canonical coloration
of G' | observe that =(G') exists via Assertion 2.4); we say that G is uniform. if for every
Y € Z(G), we have card(Y) = a(G), where card(Y") is the cardinality of ¥ and «(G) is
the stability number of G.

Definition 2.5 gets sense, since ¢ € € and so Z(() is canonical [via Assertion 2.4].
Using the definition of a uniform graph [use Definition 2.5], then the following Assertion is
immediate.

Assertion 2.6. Let G € (2 and let Z(G') be the canonical coloration of G [observe that
=(G) exists via Assertion 2.4]. We have the following trivial properties.
(2.6.0). If0 < w(G) <1, then G is uniform.
(26.1). If0 < a(G) <1, then G 1s uniform.
(2.6.2). If G is a complete graph, then G is uniform.
(2.6.3). If a(G) = 2 and if for every Y € Z(G) we have card(Y') = o(G), then G is
uniform and is not a complete graph.
Proof. Properties (2.6.0) and (2.6.1) are trivial [it suffices to use Definition 2.5]; property
(2.6.2) is an immediate consequence of property (2.6.1); and property (2.6.3) is trivial
indeed, observe (by the hypotheses) that G € €2 and use Definition 2.5 }.I:I

Uniform graphs have nice properties when we study isomorphism of graphs.

Recall 2.7. Recall that two graphs are isomorphic if there exists a one to one corre-
spondence between their vertex set that preserves adjacency.
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Assertion 2.8. Let (¢ € () then there exists a uniform graph U which is isomorphic
to a parent of G [use Definition 1.3 for the meaning of parent].

Proof. If 0 < w(G) < 1. clearly G is uniform [use property (2.6.0) of Assertion 2.6];: now
put U = G, clearly U is a uniform graph which is a parent of G. Now, if w(G) = 2,
let Z(G) be the canonical coloration of G [observe that Z((G) exists, by remarking that
G € Q and by using Assertion 2.4]; since it is immediate that y(G) = w(@), clearly
Z(G) is of the form Z(G) = {V1.....Y, ¢} Now let @ be a graph defined as fol-
lows: (i) Z(Q) = {Z1,..., Z, } is a partition of V(@) into w(G) stable sets such that,
r€ Z; €Z(Q).y € Zp € Z(Q) and j # k, = x and y are adjacent in @Q; (i) For every
J =12 ... w(G)and for every Z; € Z(Q) = {Z1..... Z ¢}, card(Z;) = a(G). Clearly
Q € 9, card(V(Q)) = w(@)a(G), Q is uniform, y(Q) = w(Q) = w(G) = x(G), and
visibly, G is isomorphic to a subgraph of @; observe that ) is isormorphic to a true pal of G
and @ € Q [because G is isomorphic to a subgraph of @ and y(Q) = w(Q) = w(G) = x(G)
and @ € Q] and @ is uniform. Using the previous and the definition of a parent, then we
immediately deduce that ) is a uniform graph which is isomorphic to a parent of . Now
put @@ = U; clearly U is a uniform graph which is isomorphic to a parent of . Assertion
2.8 follows.L]

Now the following assertion is only an immediate consequence of Assertion 2.8,

Assertion 2.9. Let II be a graph [H is not necessarily in Qf; then there exists a
uniform graph U which is isomorphic to a parent of H.
Proof. Let P be a parent of H [such a P exists via Assertion 1.4] and let U be a uniform
graph such that U is isomorphic to a parent of P [such a U exists, by observing that P €
and by using Assertion 2.8]; clearly U is a uniform graph and is isomorphic to a parent of
H [since U is a uniform graph which is isomorphic to a parent of P and P is a parent of
H] .O

Now we define relative subgraphs.

Definition 2.10. (relative subgraph). Let G and F' be uniform. Now let =(() be the
canonical coloration of G and let Z(F') be the canonical coloration of F' [ observe that the
couple (Z(G), Z(F')) exists, by remarking that G € Q and F' € (), and by using Assertion
2.4 . We say that F is a relative subgraph of G, if Z(F') C Z(G) [ it is immediate
that the previous gets sense, since in particular (G, F) € Q x Q (because G and F' are
uniform), and so Z(G) and Z(F') are canonical (via Assertion 2.4 and Definition 2.3). It is
also immediate that relative subgraphs are defined for uniform graphs, and only for uniform
graphs ]

Using the definition of a relative subgraph [use Definition 2.10] and the definition of
uniform graph [use Definition 2.5], then the following assertion is immediate and will help
us later.

Assertion 2.11. Let (P,U) be a couple of uniform graphs such that w(P) > 1
and w(U) = 1. Now let =(P) be the canonical coloration of P and let =Z(U) be the
canonical coloration of U [observe that the couple (Z(P),Z(U)) exists, by remarking
that P € @ and U € (), and by using Assertion 2.4]. Then we have the following
trivial properties.

(2.11.0). If U is a relative subgraph of P, then o(U) = a(P) and w(U) < w(P).
(2.11.1). If U is a relative subgraph of P and if w(U) = w(P) , then U = P.

399


http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology
www.ejsit-journal.com

(2.11.2). If U s a relative subgraph of P and if w(U) < w(P), then there erists
Y € Z(P) such that U is a relative subgraph of P\'Y.
(2.11.3). If o(U) = a(P) and w(U) = w(P), then U and P are isomorphic.
(2.11.4). Ifw(P) = 2, then, for every Y € Z(P), P\Y is a relative subgraph of P and
P\Y is uniform and w(P\Y)=w(P)—1 and a(P\Y) = aP).
Proof. Properties (2.11.0) and (2.11.1) and (2.11.2) are immediate [it suffices to use the
definition of a uniform graph and the definition of a relative subgraph|. Properties (2.11.3)
and (2.11.4) are trivial consequences of the definition of uniform graphs and relative sub-
graphs. [

Now we introduce again definitions that are not standard; in particular, we introduce a
graph parameter denoted by a and called the hadwiger caliber [ radwiger catiber a is related to the
hadwiger index 7 introduced in Definitions 1.7 (Section 1) |. Before, let us define.

Definition 2.12. (Fundamental). We say that a graph G is hadwigerian, if G is
uniform and if w(G) = 7(G) [ use Definitions 1.7 for the meaning of 7(G) and Definition
2.5 tfor the meaning of uniform .

The following two assertions are obvious consequences of Remark 2.1 and Definition 2.12.

Assertion 2.13. Let K be a complete graph; then K is hadwigerian.
Proof. Immediate, and is a consequence of Remark 2.1 and Definition 2.12 and property
(2.6.2) of Assertion 2.6.00

Assertion 2.14 The set of all complete graphs is an obvious example of hadwigerian

graphs.
Proof. Immediate, and is a trivial consequence of Assertion 2.13.01

Definitions 2.15. (hadwigerian subgraph and mazximal hadwigerian subgraph). Let
& be uniform. We say that a graph F is a hadwigerian subgraph of GG, if F'is hadwigerian
and is a relative subgraph of G [ use Definition 2.10 for the meaning of a relative subgraph
and Definition 2.12 for the meaning of hadwigerian |. We say that F is a mazimal had-
wigerian subgraph of G [we recall that G is uniform |, if F' is a hadwigerian subgraph of
G and w(F') is maximum for this property [ it is immediate that such a F exists and is
well defined].

Now we define the hadwiger caliber.

Definition 2.16. (Hadwiger caliber). Let G be uniform. and let F' be a mazimal
hadwigerian subgraph of G [use Definitions 2.15] | then the hadwiger caliber of G is de-
noted by a(G), where a(G) = w(F).

The following remark clearly shows that for every uniform graph G, a(G) exists and is
well defined.

Remark 2.17. For every uniform graph G, the hadwiger caliber a(G) exists and
is well defined.

Proof. Let G be uniform and let F be a maximal hadwigerian subgraph of G [use
Definitions 2.15]; observing [by definition of a mazximal hadwigerian subgraph of G| that
F'is a hadwigerian subgraph of G and w(F') is maximum for this property, clearly w(F)
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is unique and therefore a(G) is also unique, since a(G) = w(F'). So a(G) exists and is well
defined. [J

It is immediate that the hadwiger caliber [ie.  the graph parameter al is defined for
uniform graphs and only for uniform graphs. We will see that the hadwiger caliber plays
a crucial role for the algebraic reformulation of the Hadwiger conjecture. Now, using the
definition of a uniform graph [use Definition 2.5], the definition of a relative subgraph [ use
Definition 2.10] and the definition of the hadwiger caliber [ use Definition 2.16], then the
following assertion becomes immediate.

Assertion 2.18. Let G be uniform and let a(G) be the hadwiger caliber of G. Con-
sider 7(G) [ 7(G) is the hadwiger index of G (use Definitions 1.7)]. We have the
following six properties.
(2.18.0). w(G) = alG).
(2.181). G is hadwigerian < 7(G) = u,{(}') = (G} & 7(G) =w(G) & alG) =w(G).
(2.18.2). G z's* nnt hadwigerian < w(G) > a(G) & w(G) # 7(G).

(2.18.3). If w(G) € {0.1,2}, then a(G) = u.»‘( /) =71(G) (z e.G is hadwigerian ).
(2.18.4). If w(G) = j (where j € {0,1,2} ), then a(G) =

(2.18.5). For eve‘ry relative subgraph R of G [use DPﬁmtwn 2.10/, we have a(R) <
a(G).
Proof. Property (2.18.0) is immediate [use the definition of a(G)]; properties (2.18.1) and
(2.18.2) are trivial [use the definitions of a(G) and 7(G)]. Properties (2.18.3) is easy (
indeed, let G' be uniform such that w(G) = 7 where j € {0, 1,2}, clearly x(G) = j where
j € {0,1.2} ; observe w(G) = 7(G) [use the previous and property (3) of Assertion 1.9].
Now using the previous equality and property (2.18.1), then it becomes trivial to deduce
that a(G) = w(G) = 7(G) and G is hadwigerian } Property (2.18.4) is an immediate
consequence of property (2.18.3). Property (2.18.5) immediately results by using the defi-
nition of a relative subgraph [use Definition 2.10] and the definition of the parameter a [use
Definition 2.16]. O

The previous definitions and simple properties made, now the following Theorem is the
algebraic reformulation of the Hadwiger conjecture.

Theorem 2.19. ( The algebraic reformulation of the Hadwiger conjecture). The
following are equivalent.

(i) For every uniform graph U, we have w(U) = a(U).

(ii) The Hadwiger conjecture is true [i.e. For every graph G', we have x(G') < n(G")
/.

Proof. (i) = (ii)]. Indeed, observe [by the hypotheses| that for every uniform graph U, we
have w(U) = a(U); now using the previous and property (2.18.1) of Assertion 2.18, then it
hecomes trivial to deduce that

for everyuni form graph U, we have w(U) = a(U) = 7(U) (2.0).

Now let G be a graph and let P be uniform such that P is isomorphic to a parent of ¢
[such a P clearly exists via Assertion 2.9], clearly

T(P) = 7(G) (2.1)
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[by observing that in particular P is isomorphic to a parent of G and by using Remark
2.0]. Since in particular P is isomorphic to a parent of G, clearly P is isomorphic to a true
pal of G and so

X(P) = x(G) (2.2).

Clearly w(P) = x(P) [since P € Q] and using the previous equality, then it becomes
trivial to deduce that equality (2.2) clearly says that

w(P) = x(G) (2.3).

Recalling that P is uniform and using (2.0), then it becomes trivial to deduce that

w(P)=alP)=r1(P) (2.4).
Now using (2.4) and (2.3) and (2.1), then it becomes trivial to deduce that

w(P)=alP)=7(P)=x(G) and 7(P) < 7(G) (2.5).

Using (2.5), then it becomes trivial to deduce that

W(P) < X(G) < a(P) < 7(P) < 7(G) (2.6).

(2.6) immediately implies that

Y(G) < 7(G) (2.7).

It is trivial that 7(G) < n(G) and using the previous inequality, then it becomes trivial to
deduce that inequality (2.7) clearly says that

x(G) = 7(G) = (G) (2.8).

Clearly x(G) < n(G) [use (2.8)] and the previous inequality clearly says that the Hadwiger
conjecture is true for G; using the previous and observing that the graph G was arbitrary
chosen, then it becomes trivial to deduce that every graph G’ satisfies x(G') < n(G"); so
the Hadwiger conjecture is true and therefore () = (i1)].

(i) = (i)]. Immediate ( indeed, if the Hadwiger conjecture is true [i.e. if for every graph
G’ we have x(G') < n(G") |, then, using Theorem 1.8 [the original reformulation of the
Hadwiger conjecture], we immediately deduce that

for every G € Q, we have w(G) = 7(G) (2.9).
Now let U be uniform; observing that U € €2 and using (2.9), then we immediately deduce
that

for every uniform graph U, we have w(U) = 7(U) (2.10).

Now using (2.10) and property (2.18.1) of Proposition 2.18, then it becomes trivial to

deduce that for every uniform graph U, we have w(U) = a(U). So (ii) = (i)] ) Theorem
2.19 follows. OJ
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Visibly, the algebraic reformulation of the Hadwiger conjecture given by Theorem 2.19
clearly use the original reformulation of the Hadwiger conjecture and shows that the proof
of this conjecture is strongly linked to uniform graphs which are a very small class of graphs
[ use Definition 2.5 for a uniform graph].
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