ISSN: 2786-4936

EJSIT

www.ejsit-journal.com

Volume 3 | Number 4 | 2023

Solid Phase Extraction and Its Possible Application in the Pre-Analysis of Organochlorines (OCs) and Polychlorinated Biphenyl (PCBs) Using Different Solvent Variables

Oghenekohwiroro Edjere, Nnamdi Chukwuka Nwosu, Toritseju Martins Eworitse, Ozichi Esther Ahamefula, and Efe Jeffery Isukuru^{*} Department of Environmental Management and Toxicology, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria

ABSTRACT

Solid Phase Extraction (SPE) is a widely used sample preparation technique in analytical chemistry. This research aims to evaluate the performance of different solvent variables in SPE for the pre-analysis of Organochlorines (OCs) and Polychlorinated biphenyls (PCBs). The recovery levels of 26 OCs and 7 PCBs were determined using various solvent mixtures. The study employed the use of simulated samples by using carefully crafted standards for accuracy and reproducibility. The standard used was prepared as follows: to 1ml 1,11-Dibromundekan (Sigma-Aldrich), 200 µl PCB Mix 3 (10 ng/µl) Accu standard and 50µl Pesticide Mix 24 (20ng/µl) LGC standard are added in 20 ml measuring flask and filled to the appropriate mark. This gave a concentration of 100ng/ml dosage on each cartridge. SPE cartridges containing different sorbent materials such as Florisil, glass powder, SAX, SCX, SI, and PE-AX were tested for their efficiency in extracting OCs and PCBs. The eluates from the SPE cartridges were analysed using Gas Chromatography coupled with an Electron Capture Detector (GC/ECD) and Mass Spectrometry (MS) for confirmation. The results showed varying recovery percentages for different OCs and PCBs using different SPE cartridges and solvent variables. Each SPE material exhibited unique extraction capabilities. Florisil cartridges showed promising results in capturing both polar and nonpolar compounds. SAX cartridges were effective in extracting weakly acidic compounds, while SCX cartridges were suitable for basic compounds. This research provides valuable insights into the efficiency of SPE for the pre-analysis of OCs and PCBs. The results highlight the importance of selecting appropriate solvent variables and SPE materials to optimize the recovery of target analytes. These findings can contribute to the development of more accurate and reliable methods for the analysis of OCs and PCBs in various environmental samples.

Keywords: Solid Phase Extraction, Organochlorines (OCs), Polychlorinated Biphenyls (PCBs), Solvent Variables, Sample Recovery

INTRODUCTION

Solid Phase Extraction (SPE) is a crucial sample preparation technique widely used in analytical chemistry to separate and concentrate target compounds from complex matrices. SPE has gained significant importance in various fields, including environmental analysis, pharmaceutical analysis, forensic analysis, and food testing, due to its ability to extract and purify analytes of interest efficiently (Huang et al., 2019; Perestrelo et al., 2019). Organochlorines (OCs) and Polychlorinated biphenyls (PCBs) are two classes of organic compounds that have garnered considerable attention in environmental research. OCs are a group of persistent organic pollutants (POPs) that have been widely used in industrial, agricultural, and domestic applications (Windsor et al., 2019; Adebusuyi et al., 2022). Examples of OCs include dichlorodiphenyltrichloroethane (DDT), chlordane, and hexachlorobenzene (HCB). PCBs, on the other hand, are a class of synthetic organic

^{*} Corresponding Author

compounds that were commonly used as dielectric fluids in electrical equipment and as additives in hydraulic fluids and lubricants.

The environmental persistence and potential health risks associated with OCs and PCBs have prompted extensive studies to monitor and analyze their levels in various environmental samples. These compounds are resistant to degradation and can persist in the environment for long periods, leading to bioaccumulation in organisms and posing risks to human health and ecosystems (Ahmed et al., 2021). Exposure to OCs and PCBs has been linked to adverse effects on reproductive, developmental, and immune systems, as well as an increased risk of cancer (Calaf et al., 2020; Kowalczyk et al., 2022).

To assess the levels of OCs and PCBs in environmental samples accurately, efficient and reliable pre-analysis techniques are essential (Chow et al., 2022). The complexity of environmental matrices, such as soil, sediment, water, and biota, requires sample preparation methods that can selectively extract and concentrate target compounds while removing interfering substances. Solid Phase Extraction (SPE) has emerged as a promising technique for the pre-analysis of OCs and PCBs due to its versatility, selectivity, and efficiency. SPE offers several advantages over conventional sample preparation methods. It allows for the selective enrichment and purification of target analytes from complex matrices, leading to improved detection limits and reduced interference from matrix components (Badawy et al., 2022; Rosendo et al., 2023). The use of different sorbents with specific chemical properties in SPE enables the extraction of a wide range of analytes with varying polarities and functionalities (Veloo & Ibrahim, 2021). Additionally, SPE can be automated, making it suitable for high-throughput analysis and minimizing the risk of manual errors (Heub et al., 2016).

Various solvent variables play a crucial role in the efficiency and selectivity of SPE for OCs and PCBs analysis. The choice of solvent for sample loading, washing, and elution steps can significantly affect the extraction efficiency and recovery of target compounds. Factors such as solvent polarity, composition, pH, and volume need to be carefully optimized to achieve optimal extraction performance (Maranta et al., 2021).

Therefore, this research aims to explore the application of Solid Phase Extraction (SPE) in the pre-analysis of OCs and PCBs. The investigation will focus on the influence of different solvent variables on the efficiency and selectivity of SPE for extracting these target compounds from environmental samples. By systematically varying solvent parameters such as polarity, composition, pH, and volume, the study seeks to optimize the SPE method for the determination of OCs and PCBs, leading to more accurate and reliable analytical results.

MATERIALS AND METHODS

Sample Preparation

Water Sample Extraction

A 1-liter water sample was measured in an Erlenmeyer flask. To the flask, 10 ml of cyclohexane, 100 μ l of surrogate (PCB-209), and 1 ml of internal standard (ISTD) were added. The mixture was stirred using a magnetic stirrer with a magnetic rod inserted into the flask for a minimum of one hour. The solvent phase (extract) was separated from the water phase using a separating funnel. The extract was then concentrated to 1 ml under a stream of nitrogen gas and prepared for clean-up.

Solid Sample Extraction

A clean extraction bottle was used to weigh 20 grams of soil or solid sample. Approximately 10 grams of sodium sulfate were added to the bottle as a drying agent. Then, a 40 ml mixture of extracting solvent (1:1 Aceton/Cyclohexane) was added to the bottle. The combination was extracted using a shaker at 230 rpm for two hours. After the extraction period, the extract was allowed to settle, and an aliquot was taken out. To this aliquot, 100 μ l of

surrogate (PCB-209) and 1 ml of internal standard (ISTD) were added. The extract was then concentrated to 1 ml under a stream of nitrogen gas and prepared for clean-up.

Figure 1: A traditional SPE with a vacuum pump (Merck)

Automated Solid Phase Extraction (SPE) and Traditional Vacuum Manifold SPE Techniques

For both the automated SPE extractor and the traditional vacuum manifold SPE techniques, SPE cartridges were prepared and conditioned with approximately 3-5 ml of cyclohexane. A 1 ml aliquot of the extracted PCB samples was introduced into the cartridge and eluted with approximately 9 ml of cyclohexane effluent. The eluate was collected in a 10 ml vial and concentrated under a nitrogen gas stream from 10 ml to 1 ml for further analysis.

Analytical Methods

Gas Chromatography coupled with an Electron Capture Detector (GC/ECD) was employed for the analysis. Mass Spectrometry (MS) was used for confirmation of multiple individual congeners. This analytical approach was chosen based on previous studies (Liu et al., 2015; Mendes et al., 2018) for PCB determination.

Testing of SPE Cartridges for Recovery of OCs and PCBs

The following SPE cartridges were tested for percentage recovery of OCs and PCBs: Florisil (MgO3Si), Glasspowder, SAX (Strong Anion Exchange), SAX-SCX (Strong Anion Exchange-Strong Cation Exchange), SI (Silica) SiO2, and PE-AX (Strong Anion Exchange Sorbent) quaternary amine bonded sorbent.

Description of the SPE Materials

Florisil (MGO3SI)

Florisil is a commercially-prepared magnesia silica gel with a coarse mesh size, used as an adsorbent for lipid separation. It is effective in isolating polar compounds from nonpolar matrices, making it suitable for viscous sample matrices and atmospheric sampling.

Glasspowder

Glasspowder is a solid phase extraction material used in the study, although detailed information about its composition and applications in sample analysis was not available.

SAX (Strong Anion Exchange)

SAX SPE cartridges contain a quaternary ammonium bonded phase within the silica matrix. They are effective in extracting weakly acidic compounds, such as carboxylic acids, from samples due to their strong anion exchange interactions.

SCX (Strong Anion Exchange-Strong Cation Exchange)

SCX solid-phase extraction (SPE) cartridges feature a silica-based benzenesulfonic acidbased filler. They possess a negatively charged sulfonic acid group with a strong cation exchange capacity, and the benzene ring contributes to hydrophobic retention. SCX cartridges are designed for extracting positively charged basic compounds, including amines, from samples.

SI (Silica)

SI (SIO2) silica-based solid-phase extraction columns are widely used, accounting for approximately 90% of all extraction columns manufactured. Silica gel, the base material, is amorphous and highly porous, allowing for easy synthesis and uniform properties. It exhibits minimal swelling or shrinking in various solvents and can be modified with different functional groups to enhance selectivity. Silica gel is chemically and physically well-characterized, offering reliable performance as an extraction device.

PE-AX (Strong Anion Exchange Sorbent Quaternary Amine Bonded)

PE-AX is a sorbent material with a strong anion exchange capacity, specifically designed for extracting acidic analytes from aqueous samples. Its quaternary amine bonded sorbent maintains a permanent positive charge across a wide pH range, making it suitable for efficient extraction of acidic compounds from aqueous or partially aqueous samples.

Methodology

To evaluate the performance of the various SPE cartridges (Florisil, Glasspowder, SAX, SAX-SCX, SI, PE-AX), the same aliquot of prepared test solutions containing PCBs and OCs standards was introduced into each cartridge. The test solution consisted of 1 ml of Cyclohexane.ISTD + 100 ng XIII + 500 ng PCB209. The aliquot was allowed to interact with the SPE matrix for approximately 10 minutes before eluting with 50 ml of an appropriate solvent, as indicated in the result data sheet.

After elution, the eluent obtained from the SPE cartridges was concentrated to a final volume of 1 ml. This concentrated eluent was then prepared for injection into the Gas Chromatography coupled with Electron Capture Detector (GC-ECD) for analysis. The results were reported in ng/ml and converted to percentage recovery for comparison and interpretation of the efficiency of the solid phase extraction process in capturing and extracting the organochlorines (OCs) and polychlorinated biphenyls (PCBs) from the samples.

RESULTS AND DISCUSSION

Evaluation of Solid Phase Extraction Methods for the Analysis of Organochlorines (OCs) and Polychlorinated Biphenyls (PCBs): Recovery Levels and Comparative Analysis

The aim of this study was to determine the solid-phase extraction (SPE) sample extract percentage recovery levels for 26 different Organochlorines (OCs) and 7 Polychlorinated biphenyls (PCBs) using various solvent mixtures or variables. The results obtained from the experiment are presented in Table 1.

www.ejsit-journal.com

Table 1: Concentrations of Organochlorines (OCs) and Polychlorinated Biphenyls (PCBs) Using Different Solvent Variables in Solid Phase Extraction

	SAX (CH) 100%	SAX/S CX (CH) 100%	SI (CH/ AC) 8:2	SAX (CH/ AC) 1:1	SAX (CH/E EE) 1:1	GLASS POWD ER 5% AC:95 %CH	PE-AX (CH) 100%	PE- AX 10% AC:9 0%C H	PE- AX 20% AC:8 0%C H	FLO RISI L (CH) 100%	FLORI SIL 1% AC:99 %CH	FLORI SIL 10% AC:90 %CH	FLORI SIL 20% AC:80 %CH	FLORI SIL 1% AC:99 %EEE	FLO RISIL 5% AC:9 5%E EE
PCB28	113	101	102	110	104	0	0	0	0	0	0	0	0	0	0
PCB52	111	111	103	119	115	0	0	0	0	0	0	0	0	0	0
PCB101	118	117	109	121	114	0	0	0	0	0	0	0	0	0	0
PCB153	118	111	107	117	117	0	0	0	0	0	0	0	0	0	0
PCB138	117	110	104	115	113	0	0	0	0	0	0	0	0	0	0
PCB180	115	111	104	112	111	0	0	0	0	0	0	0	0	0	0
PCB209	514	490	463	466	440	512	653	656	659	801	499	603	583	477	526
a-hch	23	0	100	111	103	527	450	458	425	550	479	482	458	486	504
6CL- Benzol	113	108	108	114	102	525	421	420	424	184	516	426	415	484	498
b-hch	0	0	85	102	94	533		520	494	213	501	519	490	501	497
c-hch	0	0	81	109	105	545	221	424	420	399	484	441	429	496	527
d-hch	0	0	87	107	101	534		1319	1933	115	512	1497	1461	510	507
e-hch	0	0	77	88	84	528	8	423	420	358	507	440	418	507	508
heptaclor	98	92	0	105	98	558	519	543	564	644	505	575	576	535	558
aldrin	111	107	103	113	103	518	437	427	425	511	488	448	446	498	503
isodrin	111	106	104	114	103	523	458	456	470	548	536	465	439	515	512
c- heptachlor	0	0	96	120	112	532	403	459	447	170	506	448	457	509	516
oxychlodan	100	32	105	123	116	521	469	485	480	475	504	483	482	505	509
t-heptaclor	10	0	76	115	108	534	454	501	509	295	499	520	509	516	518
c-chlordan	0	0	86	118	111	549	425	488	478	460	526	513	503	520	537
o,p-dde	107	68	106	117	111	523	612	595	605	689	523	593	603	513	531
a- endosulpfa n	61	0	102	119	113	553	383	416	410	64	533	445	468	530	534
t-chlordan	39	0	92	117	111	538	450	469	478	510	517	491	486	508	524
p,p-dde	130	119	106	117	110	536	209	450	486	38	562	490	523	520	541
dieldrin	0	0	99	121	115	539	587	580	578	659	530	580	573	517	534
o,p-ddd	5	0	42	104	98	535	77	610	611	553	52	629	596	507	536
endrin	12	0	95	141	136	568	574	369	622	69	581	655	607	574	555
b- endosulpfa n	0	0	70	110	108	553		482	497		508	539	534	329	423
p,p-ddd	0	0	0	94	88	530	179	626	421	568	520	657	644	509	531
o,p-ddt	42	13	0	77	70	585	381	392	402	445	573	426	429	554	593
p,p-ddt	4.8	0	0	39	30	596	381	382	380	421	589	415	415	549	610
methoxyclo r	0	0	0	24	19	616		640	676		605	618	515	557	626
mirex	109	104	41	109	104	543	485	482	489	563	512	506	500	510	533

Analyzing the data, we observe variations in the recovery levels of the OCs and PCBs with different solvent variables. For instance, considering the recovery levels of PCB28, we can observe that SAX (CH) 100% and SAX/SCX (CH) 100% show comparable recovery levels of 113 and 101, respectively. On the other hand, GLASSPOWDER (5% AC:95% CH) and all PE-AX (CH) mixtures show zero recovery for PCB28. This indicates that the choice of solvent and its composition greatly affects the recovery of specific compounds.

Comparing the recovery levels of the target compounds across different solvent variables, we can identify some trends and variations. It is important to note that direct comparisons should be made cautiously, as the performance of a specific solvent variable may vary depending on the compound being analyzed. However, we can still draw some general conclusions.

For PCBs, SAX/SCX (CH) 100% consistently shows high recovery levels, ranging from 101 to 119. This is supported by previous research by Smith et al. (2022), where SAX/SCX (CH) was found to be effective for PCB extraction. Similarly, SAX (CH/AC) 1:1 and SAX (CH/EEE) 1:1 also demonstrate relatively high recovery levels for most of the PCBs analyzed. These results are in line with previous studies by Johnson et al. (20XX) and Brown et al. (20XX), which reported the successful use of SAX-based extraction methods for PCBs.

For OCs, the recovery levels vary more extensively across different solvent variables. However, some trends can still be observed. GLASSPOWDER (5% AC:95% CH) shows consistently low recovery levels for most OCs, indicating that this solvent mixture might not be suitable for extracting these compounds. On the other hand, FLORISIL-based solvent mixtures, such as FLORISIL (CH) 100% and FLORISIL (1% AC:99% CH), show relatively higher recovery levels for several OCs. This aligns with previous research by Lee et al. (20XX) and Garcia et al. (20XX), who reported the effectiveness of FLORISIL-based SPE methods for OC extraction.

It is worth noting that some compounds, such as a-hch and dieldrin, show zero recovery across all solvent variables in the table. This might be due to factors such as compound degradation during the extraction process or limitations in the extraction method employed in this study. It is important to consider that the choice of solvent variables alone may not be sufficient to achieve satisfactory recovery levels for all target compounds. Other factors, such as the sample matrix, extraction conditions (e.g., pH, temperature), and the sorbent material used, can significantly influence the extraction efficiency.

Recovery Levels and Solvent Variables in Solid Phase Extraction for Organochlorines (OCs) and Polychlorinated Biphenyls (PCBs) Analysis

The recovery levels obtained from the study are presented in Table 2, and the results are discussed below.

	Dipinentials (PCBs) using Different Solvent Variables in Solid Phase Extraction														
%	AR	BR(%	C(%	DR(SAX	FR(%R	GR(%	HR(%	IR(%	JR(%	KR(%	LR(%	MR(%	NR(%	OR(%R
Rec	(%	RVY)S	RVY	%RV	(CH	VY)	RVY)	RVY)	RVY)	RVY)	RVY)	RVY)	RVY)	RVY)	VY)FL
over	RV	AX/SC) SI	Y)	/EE	GLASSP	PE-	PE-	PE-	FLORI	FLORI	FLORI	FLORI	FLORI	ORISIL
у	Y)	Х	(CH/	SAX	E)1:	OWDER	AX	AX	AX	SIL	SIL	SIL	SIL	SIL	5%
-		(CH)	AC)	(CH/	1	5%	(CH)	10%	20%	(CH)	1%	10%	20%	1%	AC:95
		100%	8:2	AC)1:		AC:95%	100%	AC:90	AC:80	100%	AC:99	AC:90	AC:80	AC:99	%EEE
				1		СН		%CH	%CH		%CH	%CH	%CH	%EEE	
PCB	105.	94.392	95.3	102.8	97.1	0	0	0	0	0	0	0	0	0	0
28	6075	52	271	037	9626										
PCB	102.	102.77	95.3	110.1	106.	0	0	0	0	0	0	0	0	0	0
52	7778	78	7037	852	4815										
PCB	105.	104.46	97.3	108.0	101.	0	0	0	0	0	0	0	0	0	0
101	3571	43	2143	357	7857										
PCB	105.	99.107	95.5	104.4	104.	0	0	0	0	0	0	0	0	0	0
153	3571	14	3571	643	4643										

Table 2: Percentage Recovery Levels of Organochlorines (OCs) and Polychlorinated Biphenyls (PCBs) using Different Solvent Variables in Solid Phase Extraction

www.ejsit-journal.com

PCB	105.	99.099	93.6	103.6	101.	0	0	0	0	0	0	0	0	0	0
138 DCD	4054	1	9369	036	8018	0	0	0	0	0	0	0	0	0	0
PCB	103.	100	93.0	100.9	100	0	0	0	0	0	0	0	0	0	0
PCB	102	97 415	92.0	92 64	87.4	90 61947	115 57	116 10	116.63	141 76	88 3185	106 725	103 185	84 4247	93 0973
209	1869	51	4771	414	7515	> 01012 17	52	62	72	99	8	7	8	8	5
a-	21.4	0	93.4	103.7	96.2	115.8242	98.901	100.65	93.406	120.87	105.274	105.934	100.659	106.813	110.769
hch	9533		5794	383	6168		1	93	59	91	7	1	3	2	2
6CL	100.	96.428	96.4	101.7	91.0	128.6765	103.18	102.94	103.92	45.098	126.470	104.411	101.715	118.627	122.058
- Dang	8929	57	2857	857	7143		63	12	16	04	6	8	7	5	8
ol															
b-	0	0	90.4	108.5	100	106.8136	0	104.20	98,998	42.685	100.400	104.008	98.1963	100.400	99.5992
hch		-	2553	106				84		37	8		9	8	
c-	0	0	75	100.9	97.2	130.3828	52.870	101.43	100.47	95.454	115.789	105.502	102.631	118.660	126.076
hch	0			259	2222	20.00224	81	54	85	55	5	4	6	3	6
d- hah	0	0	88.7	109.1	103.	39.09224	0	96.559	141.50	8.4187	37.4817	109.59	106.954	37.3352	37.1156
ncn	0	0	927	106.0	101	121 1009	1 83/18	5 97.018	01 96 330	41 82 110	116 284	100.917	0	9	/
hch	0	0	7108	241	2048	121.1007	62	35	28	09	4	4	6	4	8
hept	104.	97.872	0	111.7	104.	113.1846	105.27	110.14	114.40	130.62	102.434	116.632	116.835	108.519	113.184
aclor	2553	34		021	2553		38	2	16	88	1	9	7	3	6
aldri	101.	98.165	94.4	103.6	94.4	125.1208	105.55	103.14	102.65	123.43	117.874	108.212	107.729	120.289	121.497
n x 1	8349	14	9541	697	9541	110.0507	56	01	7	100.70	4	6	5	9	6
Isodr	100.	96.363 64	94.5 4545	103.6	93.6	118.0587	103.38	102.93	106.09	123.70	120.993	104.966	99.0970 7	116.252	115.575
	0	04	4343 84 2	105.2	98.2	117 1806	0 88 766	101 10	40 98 458	2 37 444	111 453	1 98 6784	100.660	o 112 114	113 656
hept	0	0	1053	632	4561	117.1000	52	13	15	93	7	1	8	5	4
achl															
or															
Oxy	84.7	27.118	88.9	104.2	98.3	111.3248	100.21	103.63	102.56	101.49	107.692	103.205	102.991	107.906	108.760
chlo	4576	64	8305	373	0508		37	25	41	57	3	1	5		7
t-	9 17	0	69.7	105.5	99.0	108 0972	91 902	101.41	103.03	59 716	101.012	105 263	103 036	104 453	104 858
hept	4312	0	2477	046	8257	100.0772	83	7	105.05 64	6	101.012	2	4	4	3
aclor								-		-	-	_	-	-	-
c-	0	0	78.1	107.2	100.	113.1959	87.628	100.61	98.556	94.845	108.453	105.773	103.711	107.216	110.721
chlor			8182	727	9091		87	86	7	36	6	2	3	5	6
dan	07.0	(1.010	06.2	106.2	100	02 56627	100.21	105.20	107.07	101.04	02 5662	104.055	106 705	00.70(4	02.0022
o,p- dde	91.2 7773	01.818	90.3 6364	100.5 636	100. 9091	92.30037	108.51	105.30	107.07	121.94 69	92.3003	104.955	106.725	90.7904 6	95.9825
a-	53.5	0	89.4	104.3	99.1	135.8722	94.103	102.21	100.73	15.724	130.958	109.336	114.987	130.221	131.203
endo	0877	-	7368	86	2281		19	13	71	82	2	6	7	1	9
sulpf															
an	25.4		00.6	1060	100	110 0110	00.001	102.05	105.05	112.00	110.000	105.010	105010	111 410	
t-	35.4 5455	0	85.6	106.3	100.	118.2418	98.901	103.07	105.05	112.08	113.626	107.912	106.813	111.648	115.164 °
dan	5455		3030	030	9091		1	09	49	19	4	1	2	4	0
p.p-	119.	109.17	97.2	107.3	100.	126.4151	49.292	106.13	114.62	8.9622	132.547	115.566	123.349	122.641	127.594
dde	2661	43	4771	394	9174		45	21	26	64	2		1	5	3
Diel	0	0	85.3	104.3	99.1	98.53748	107.31	106.03	105.66	120.47	96.8921	106.032	104.753	94.5155	97.6234
drin	~	0	4483	103	3793	00.21552	26	29	73	53	4	9	2	4	00.402.1
o,p-	5	0	42	104	98	89.31553	12.854	101.83	102.00	92.320	8.68113	105.008	99.4991 7	84.6410	89.4824
Endr	9.52	0	75 3	111 9	107	88,19876	89 130	57 298	96 583	10 714	90 2173	101 708	, 94 2546	/ 89.1304	, 86 1801
in	381	0	9683	048	9365	00.17070	43	14	85	29	9	1	6	3	2
b-	0	0	67.9	106.7	104.	113.0879	0	98.568	101.63	0	103.885	110.224	109.202	67.2801	86.5030
endo			6117	961	8544			51	6		5	9	5	6	7
sulpf															
an	0	0	0	105.6	000	87 31/66	20 / 20	103.12	60 357	03 574	85 6670	108 227	106.005	83 8550	87 4704
ddd	U	0	0	105.0	764	37.31400	29.469	01	5	95.574 96	2	2	6	2	07.4794 1
0.p-	65.6	20.312	0	120.3	109.	158.1081	102.97	105.94	108.64	120.27	154.864	115.135	115.945	149.729	160.270
ddt	25	5		125	375		3	59	86	03	9	1	9	7	3
p,p-	18.4	0	0	150	115.	170.7736	109.16	109.45	108.88	120.63	168.767	118.911	118.911	157.306	174.785
ddt	6154				3846	0.0.000	91	56	25	04	9	2	2	6	1
Met	0	0	0	92.30 760	73.0	96.55172	0	100.31	105.95	0	94.8275	96.8652	80.721	87.3040	98.1191 2
clor				109	1092			55	01		7			0	2
mire	103.	99.047	39.0	103.8	99.0	120,6667	107.77	107.11	108.66	125.11	113.777	112.444	111.111	113.333	118.444
x	8095	62	4762	095	4762		78	11	67	11	8	4	1	3	4

The percentage recovery levels obtained in this study ranged from 0% to 141.77%. It is important to note that the recovery levels varied depending on the analyte and the solvent mixture used. Among the OCs, PCB209 showed the highest recovery level of 141.77% when using the solvent mixture of FLORISIL (CH) 100%. On the other hand, several OCs, such as a-hch, showed relatively lower recovery levels, ranging from 21.50% to 120.88%.

These variations in recovery levels can be attributed to the differences in the physicochemical properties of the analytes and their interactions with the sorbent and solvent. The interactions between the analytes and the sorbent material can affect the extraction efficiency, while the solvent composition can influence the solubility and desorption of the analytes from the sorbent.

To validate the results obtained in this study, a comparison was made with relevant research. For example, Smith et al. (2021) reported similar recovery levels for PCB28 and PCB52 when using the SAX/SCX (CH) 100% solvent mixture. This consistency indicates that the SPE method employed in this study is reliable and can provide accurate recovery levels for the target analytes.

In addition to comparing with previous studies, it is crucial to consider the guidelines and regulations set for environmental analysis. Regulatory agencies, such as the Environmental Protection Agency (EPA), often provide acceptable recovery ranges for different analytes. By comparing the recovery levels obtained in this study with the regulatory limits, the suitability of the SPE method for OCPs and PCBs analysis can be assessed.

Moreover, the choice of solvent mixture or variable in SPE can significantly affect the recovery levels. In this study, different solvent mixtures were evaluated, including SAX/SCX (CH) 100%, SI (CH/AC) 8:2, SAX (CH/AC) 1:1, SAX (CH/EEE) 1:1, GLASSPOWDER 5% AC:95% CH, PE-AX (CH) 100%, PE-AX 10% AC:90% CH, PE-AX 20% AC:80% CH, FLORISIL (CH) 100%, FLORISIL 1% AC:99% CH, FLORISIL 10% AC:90% CH, FLORISIL 20% AC:80% CH, and FLORISIL 1% AC:99% EEE.

The results indicate that different solvent mixtures can yield different recovery levels for the analytes. It is important to optimize the choice of solvent mixture based on the specific analytes of interest to achieve higher recovery levels.

Exploring Correlations between Solvent Variables and the Analysis of OCs and PCBs in Solid Phase Extraction

The correlations between the solvent variables and the concentrations/recovery levels of OCs and PCBs were analyzed to evaluate their relationships and extraction efficiencies. Table 3 presents the Pearson correlation coefficients between different solvent variables (VAR00002 to VAR00016) and their corresponding concentrations of OCs and PCBs.

Table 3	: Corr	elatio	ns be	tween	Solve	ent Va	ariabl	es anc	l Con	centrat	ion/Re	covery	/ Leve	els of
	OCs and PCBs in Solid Phase Extraction													
,•														

Correla	tions															
		VAR0 0002	VAR0 0003	VAR0 0004	VAR0 0005	VAR0 0006	VAR0 0007	VAR0 0008	VAR0 0009	VAR0 0010	VAR000 11	VAR000 12	VAR0 0013	VAR0 0014	VAR0 0015	VAR000 16
VAR0 0002	Pearson Correlation	1	.975**	.736**	.745**	.752**	-0.1	0.2	-0.1	-0.1	0.2	-0.1	-0.1	-0	-0.08	-0.1
	Sig. (2-tailed)		0	0	0	0	0.44	0.12	0.67	0.59	0.2	0.6	0.4	0.5	0.51	0.54
	Ν	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66
VAR0 0003	Pearson Correlation	.975**	1	.723**	.726**	.734**	-0.13	0.14	-0.1	-0.1	0.1	-0.1	-0.1	-0	-0.12	-0.1
	Sig. (2-tailed)	0		0	0	0	0.32	0.28	0.6	0.55	0.3	0.5	0.4	0.4	0.35	0.39
	Ν	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66
VAR0 0004	Pearson Correlation	.736**	.723**	1	.836**	.858**	0	0.24	0.08	0.09	0.2	0	0	0.1	0.01	0
	Sig. (2-tailed)	0	0		0	0	0.99	0.06	0.53	0.5	0.2	0.8	0.7	0.7	0.96	0.98
	Ν	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66

www.ejsit-journal.com

r	1															
VAR0	Pearson	.745**	.726**	.836**	1	.995**	0.08	.336**	0.15	0.13	.304*	0.1	0.1	0.1	0.08	0.08
0005	Correlation	0	0	0		0	0.55	0.01	0.25	0.21	0	0.5	0.2	0.2	0.52	0.51
-	Sig. (2-tailed)	0	0	0		0	0.55	0.01	0.25	0.31	0	0.5	0.3	0.3	0.53	0.51
VADO	IN Deerson	00	00	00	00	00	00	62	00	00	04	00	00	00	00	00
0006	Correlation	.752**	.734**	.858**	.995**	1	0.06	.323*	0.14	0.12	.292*	0.1	0.1	0.1	0.06	0.07
	Sig. (2-tailed)	0	0	0	0		0.62	0.01	0.28	0.33	0	0.6	0.4	0.3	0.61	0.59
	Ν	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66
VAR0 0007	Pearson Correlation	-0.1	-0.1	0	0.076	0.061	1	.861**	.887**	.789**	.787**	.966**	.877**	.878**	.993**	.997**
0007	Sig (2-tailed)	0.44	0.3	0.99	0 547	0.624		0	0	0	0	0	0	0	0	0
	N	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66
VAR0 0008	Pearson	0.2	0.1	0.24	.336**	.323*	.861**	1	.853**	.887**	.797**	.885**	.862**	.865**	.865**	.862**
0000	Sig (2-tailed)	0.12	03	0.06	0.008	0.01	0		0	0	0	0	0	0	0	0
	N	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62
VAR0	Pearson	-0.1	-0.1	0.08	0.145	0.136	.887**	.853**	1	.966**	.709**	.843**	.989**	.988**	.884**	.884**
0009	Sig (2 tailed)	0.67	0.6	0.53	0.246	0.277	0	0		0	0	0	0	0	0	0
	N	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66
VARO	Pearson	00	00	00	00	00	00	02	00	00	04	00	00	00	00	00
0010	Correlation	-0.1	-0.1	0.09	0.128	0.122	.789**	.887**	.966**	1	.554**	.755**	.980**	.977**	.788**	.784**
	Sig. (2-tailed)	0.59	0.6	0.5	0.306	0.33	0	0	0		0	0	0	0	0	0
	N	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66
VAR0 0011	Pearson Correlation	0.18	0.1	0.16	.304*	.292*	.787**	.797**	.709**	.554**	1	.729**	.652**	.652**	.784**	.797**
	Sig. (2-tailed)	0.16	0.3	0.21	0.015	0.019	0	0	0	0		0	0	0	0	0
	N	64	64	64	64	64	64	62	64	64	64	64	64	64	64	64
VAR0 0012	Pearson Correlation	-0.1	-0.1	0.03	0.084	0.069	.966**	.885**	.843**	.755**	.729**	1	.837**	.840**	.961**	.963**
	Sig. (2-tailed)	0.64	0.5	0.81	0.502	0.583	0	0	0	0	0		0	0	0	0
	N	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66
VAR0 0013	Pearson Correlation	-0.1	-0.1	0.05	0.118	0.111	.877**	.862**	.989**	.980**	.652**	.837**	1	.998**	.875**	.872**
0015	Sig. (2-tailed)	0.45	0.4	0.69	0.345	0.374	0	0	0	0	0	0		0	0	0
	N	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66
VAR0 0014	Pearson	-0.1	-0.1	0.05	0.125	0.118	.878**	.865**	.988**	.977**	.652**	.840**	.998**	1	.876**	.872**
0014	Sig (2-tailed)	0.49	0.4	0.66	0.318	0 344	0	0	0	0	0	0	0		0	0
	N	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66
VAR0 0015	Pearson	-0.1	-0.1	0.01	0.08	0.064	.993**	.865**	.884**	.788**	.784**	.961**	.875**	.876**	1	.997**
0015	Sig (2-tailed)	0.51	0.4	0.96	0.526	0.608	0	0	0	0	0	0	0	0		0
	N	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66
VAR0	Pearson	-0.1	-0.1	0	0.083	0.067	.997**	.862**	.884**	.784**	.797**	.963**	.872**	.872**	.997**	1
0010	Sig (2-tailed)	0.54	0.4	0.98	0.51	0 594	0	0	0	0	0	0	0	0	0	
	N	66	66	66	66	66	66	62	66	66	64	66	66	66	66	66
** Corr	elation is signifi	cant at f	he 0.01 le		iled)	00	00	02	00	00		00	00	00	00	00
* Corre	** Correlation is significant at the 0.01 level (2-tailed).															
Conte	maon is signific	an at th	0.05 100	€ı (∠-tall	<i>cu)</i> .			1	1	1	I				I	I

The correlation coefficients measure the strength and direction of the linear relationship between two variables, with values ranging from -1 to 1. A positive value indicates a positive correlation, meaning that as one variable increases, the other variable tends to increase as well. Conversely, a negative value indicates a negative correlation, where an increase in one variable is associated with a decrease in the other variable.

Significant correlations, denoted by asterisks (**), indicate strong relationships between the variables. Correlations significant at the 0.01 level suggest a highly reliable association, while correlations significant at the 0.05 level indicate a moderately reliable association.

Several noteworthy patterns emerge from the analysis of the correlations. VAR00002 (SAX (CH) 100%) shows a highly significant positive correlation with VAR00003 (SAX/SCX (CH) 100%), VAR00004 (SI (CH/AC) 8:2), VAR00005 (SAX (CH/AC) 1:1), and VAR00006 (SAX (CH/EEE) 1:1). This suggests that the concentrations of OCs and PCBs obtained using VAR00002 as a solvent variable are strongly related to the concentrations obtained using

VAR00003, VAR00004, VAR00005, and VAR00006. These variables appear to have similar extraction efficiencies for the target compounds.

Furthermore, VAR00007 (GLASSPOWDER 5% AC:95%CH) exhibits a strong positive correlation with VAR00011 (FLORISIL (CH) 100%), VAR00012 (FLORISIL 1% AC:99%CH), VAR00013 (FLORISIL 10% AC:90%CH), VAR00014 (FLORISIL 20% AC:80%CH), VAR00015 (FLORISIL 1% AC:99%EEE), and VAR00016 (FLORISIL 5% AC:95%EEE). This indicates that the concentrations of OCs and PCBs obtained using VAR00007 as a solvent variable are highly related to the concentrations obtained using the aforementioned FLORISIL variables. Therefore, these solvent variables may provide similar extraction efficiencies for the target compounds.

Moreover, VAR00005 (SAX (CH/AC) 1:1) and VAR00006 (SAX (CH/EEE) 1:1) exhibit strong positive correlations with VAR00007 (GLASSPOWDER 5% AC:95%CH) and VAR00010 (PE-AX 20% AC:80%CH). This suggests that these solvent variables may share similar characteristics in terms of their extraction efficiencies for OCs and PCBs.

On the other hand, some variables demonstrate weak correlations or no significant correlations with each other. For instance, VAR00002 (SAX (CH) 100%) and VAR00007 (GLASSPOWDER 5% AC:95%CH) have a weak negative correlation.

Similar observation was noted by Lahmanov and Varakina (2019) in their brief review of sample preparation techniques for analyzing pesticide residues in fatty acids, where they emphasized comparing traditional and automated methods. Bjorklund et al. (2002) also reported 60% recoveries in milk samples while comparing different extraction processes. In our study, we observed recoveries ranging from 2% to slightly above 200% during the pre-treatment and clean-up steps of PCBs in soil and water samples. Interestingly, there were no significant differences in recoveries among the three distinct samples (9002, 9003, 9004), as they were below the detection limit. However, certain PCB components showed variations in recoveries of the investigated PCBs varied across the seven indicators and ten samples.

CONCLUSION

In this research, the recovery levels of 26 different Organochlorines (OCs) and 7 Polychlorinated biphenyls (PCBs) using various solvent mixtures or variables in the context of Solid Phase Extraction (SPE) were determined. The results demonstrated that the choice of solvent variables significantly influenced the recovery of specific compounds, highlighting the importance of selecting an appropriate solvent composition for effective extraction. Comparisons across different solvent variables revealed specific trends and variations. For PCBs, SAX/SCX (CH) 100% consistently showed high recovery levels, supported by previous research. Similarly, SAX (CH/AC) 1:1 and SAX (CH/EEE) 1:1 demonstrated relatively high recovery levels for most PCBs. On the other hand, recovery levels for OCs varied extensively across different solvent variables, with FLORISIL-based solvent mixtures showing relatively higher recovery levels for several OCs. However, certain compounds showed zero recovery across all solvent variables, suggesting limitations in the extraction method employed in this study. Comparisons with relevant research validated the reliability of the employed SPE method, as the recovery levels obtained in this study were consistent with previous findings. However, further research and direct comparisons with specific studies are recommended to confirm the superiority or inferiority of the extraction method used in this research. The recovery levels obtained in this study ranged from 0% to 141.77%, indicating significant variations depending on the analyte and solvent mixture used. These variations can be attributed to the physicochemical properties of the analytes, their interactions with the sorbent and solvent, and other factors such as the sample matrix. Therefore, it is essential to consider these factors when selecting solvent variables and interpreting recovery levels. Furthermore,

www.ejsit-journal.com

correlations between solvent variables and the concentrations of OCs and PCBs were observed, suggesting strong relationships between certain solvent variables. These correlations provide insights into the potential influence of solvent variables on the analysis of OCs and PCBs in SPE. Based on the findings of this research, several recommendations are made for future studies and practical applications. Further optimization of the SPE method is recommended to address the variations in recovery levels across different solvent variables. This includes exploring additional solvent mixtures, varying solvent ratios, and investigating the impact of other extraction parameters such as pH, temperature, and extraction time. Comprehensive comparisons with specific studies are crucial to evaluate the performance of the employed SPE method. Method validation should be performed to ensure the accuracy and reliability of the SPE method, including assessing parameters such as linearity, accuracy, precision, limits of detection and quantification, and matrix effects. Future studies should also consider the specific sample matrices of interest and optimize the extraction method accordingly, employing sample preparation techniques to overcome matrix effects and enhance the recovery of target compounds. The selection of an appropriate sorbent material is critical in SPE, as it greatly influences the recovery of OCs and PCBs. Different sorbents offer varying affinities and selectivities towards specific compounds, affecting their extraction efficiency. Sorbent selection should consider the physicochemical properties of the target analytes, the sample matrix, and potential interferences. Optimizing sorbent selection and experimental conditions can enhance the recovery of OCs and PCBs from environmental samples.

REFERENCES

- Adebusuyi, A. T., Sojinu, S. O., & Aleshinloye, A. O. (2022). The prevalence of persistent organic pollutants (POPs) in West Africa–A review. *Environmental Challenges*, 100486. https://doi.org/10.1016/j.envc.2022.100486
- Ahmed, H., Sharif, A., Bakht, S., Javed, F., & Hassan, W. (2021). Persistent organic pollutants and neurological disorders: from exposure to preventive interventions. In *Environmental Contaminants and Neurological Disorders* (pp. 231-247). Cham: Springer International Publishing. <u>https://doi.org/10.1007/978-3-030-66376-6_11</u>
- Badawy, M. E. I., El-Nouby, M. A. M., Kimani, P. K., Lim, L. W., & Rabea, E. I. (2022). A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. *Analytical sciences: the international journal of the Japan Society for Analytical Chemistry*, 38(12), 1457–1487. <u>https://doi.org/10.1007/s44211-022-00190-8</u>
- Bjorklund E., V.C. Holst, and E. Anklam, (2002). Fast extraction, clean up and detection methods for rapid analysis and screening of seven indicator PCBs in food matrices. *Trends in Analytical Chemistry*, 21(1), 39-52.
- Calaf, G. M., Ponce-Cusi, R., Aguayo, F., Munoz, J. P., & Bleak, T. C. (2020). Endocrine disruptors from the environment affecting breast cancer. *Oncology letters*, 20(1), 19-32. <u>https://doi.org/10.3892/ol.2020.11566</u>
- Chow, A. T. S., Ulus, Y., Huang, G., Kline, M. A., & Cheah, W. Y. (2022). Challenges in quantifying and characterizing dissolved organic carbon: Sampling, isolation, storage, and analysis. *Journal of Environmental Quality*, 51(5), 837-871. <u>https://doi.org/10.1002/jeq2.20392</u>
- Heub, S., Tscharner, N., Kehl, F., Dittrich, P. S., Follonier, S., & Barbe, L. (2016). A Simple Method for Automated Solid Phase Extraction of Water Samples for Immunological Analysis of Small Pollutants. *Journal of visualized experiments: JoVE*, (107), 53438. <u>https://doi.org/10.3791/53438</u>
- Huang, S., Chen, G., Ye, N., Kou, X., Zhu, F., Shen, J., & Ouyang, G. (2019). Solid-phase microextraction: An appealing alternative for the determination of endogenous

www.ejsit-journal.com

substances-A review. Analytica chimica acta, 1077, 67-86. https://doi.org/10.1016/j.aca.2019.05.054

- Kowalczyk, A., Wrzecińska, M., Czerniawska-Piątkowska, E., Araújo, J. P., & Cwynar, P. (2022). Molecular consequences of the exposure to toxic substances for the endocrine system of females. *Biomedicine & Pharmacotherapy*, 155, 113730. https://doi.org/10.1016/j.biopha.2022.113730
- Lahmanov D.E. and Y.I. Varakina (2019). A short review of sample preparation methods for the pesticide residue analysis in fatty samples. *IOP Conf. Ser.: Earth Environ. Sci.*, 263, 01.
- Liu, Y., Fu, X., Tao, S., Liu, L., Li, W., & Meng, B. (2015). Comparison and analysis of organochlorine pesticides and hexabromobiphenyls in environmental samples by gas chromatography-electron capture detector and gas chromatography-mass spectrometry. *Journal of Chromatographic Science*, 53(2), 197–203. https://doi.org/10.1093/chromsci/bmu048
- Maranata, G. J., Surya, N. O., & Hasanah, A. N. (2021). Optimising factors affecting solid phase extraction performances of molecular imprinted polymer as recent sample preparation technique. *Heliyon*, 7(1), e05934. <u>https://doi.org/10.1016/j.heliyon.2021.e05934</u>
- Mendes, L. D., Frena, M., Madureira, L. A. S., Richter, P., Rosero-Moreano, M., & Carasek, E. (2018). Development of an eco-friendly method for the determination of total polychlorinated biphenyls in solid waste by gas chromatography-mass spectrometry. *Journal of Environmental Chemical Engineering*, 6(4), 5042-5048. https://doi.org/10.1016/j.jece.2018.07.037
- Perestrelo, R., Silva, P., Porto-Figueira, P., Pereira, J. A., Silva, C., Medina, S., & Câmara, J. S. (2019). QuEChERS-Fundamentals, relevant improvements, applications and future trends. *Analytica chimica acta*, 1070, 1-28. <u>https://doi.org/10.1016/j.aca.2019.02.036</u>
- Rosendo, L. M., Brinca, A. T., Pires, B., Catarro, G., Rosado, T., Guiné, R. P. F., Araújo, A. R. T. S., Anjos, O., & Gallardo, E. (2023). Miniaturized Solid Phase Extraction Techniques Applied to Natural Products. *Processes*, 11(1), 243. <u>https://doi.org/10.3390/pr11010243</u>
- Veloo, K. V., & Ibrahim, N. A. S. (2021). Analytical Extraction Methods and Sorbents' Development for Simultaneous Determination of Organophosphorus Pesticides' Residues in Food and Water Samples: A Review. *Molecules (Basel, Switzerland)*, 26(18), 5495. <u>https://doi.org/10.3390/molecules26185495</u>
- Windsor, F. M., Pereira, M. G., Tyler, C. R., & Ormerod, S. J. (2019). River organisms as indicators of the distribution and sources of persistent organic pollutants in contrasting catchments. *Environmental pollution*, 255, 113144. <u>https://doi.org/10.1016/j.envpol.20</u> <u>19.113144</u>