
 European Journal of Science, Innovation and Technology 

 ISSN: 2786-4936    

 www.ejsit-journal.com 

 

   

 

  
Volume 3 | Number 1 | 2023 

 
238 

EJSIT 

ML Ontological Solution for Blood Donation System  

 

Sana Rizwan 1, Muhammad Salman Ahmed 2, Akash ur Rehman 3, 

Muhammad Abu Hurairah 4  
1Assistant Professor, Department of Computer Science, COMSATS University Islamabad, 

Lahore Campus, Pakistan 
2,3,4Student of BSSE, Department of Computer Science, COMSATS University Islamabad, 

Lahore Campus, Pakistan 

 

Abstract 

Blood donation is basically a process where an individual can voluntarily donate his/her 

blood for future transfusions. He/she donates his/her blood to the organizations that require that 

blood for treatment purposes like hospitals etc. People are majorly focused on helping others 

in case of emergency circumstances. Aim of this working is to provide a platform where they 

can donate their blood and can seek help in any case of emergency. To solve this real-world 

problem, adopt machine learning and ontology learning approaches to make the system learn 

by themselves. Automated blood donation system will use in emergency and make the blood 

donation an easy process by facilitating people with no hassle in search of blood pints from 

blood banks. Patients can achieve the blood by contacting the donor through the internet or a 

personal contact number. This facilitation process starts from blood screening, capturing the 

data of donors from datasets, adding new donors/donor agencies, applying machine learning 

algorithms to filter the required data of donor(s) with respect to screening results and diseases 

and will end on request completion and feedback statements. As the study on the semantic web 

is progressing, many domain ontologies are being built on the defined case. Ontologies are 

built for variety of reasons, provide a specification of a particular domain in an explicit format, 

ontologies serve as a common vocabulary for different people i.e., stakeholders, to 

communicate about a specific domain, providing a framework for capturing and sharing the 

knowledge etc. Ontologies help to integrate data from different sources by particular domain 

knowledge. The trained dataset will be imported and merged with self-created ontological 

structure, this schema will check by SPARQL queries and exported to web platform. 

Keywords: RDF, Ontology, Classes, SPARQL, Object Properties, Data Properties, OWL 

Wiz, Logistic Regression, SVM, Decision Trees, KNN, Gradient Roasting, Random Forest 

Classifire, MLP Classifier 

 

Introduction 

To build a complete ontology, this study tried to merge the heterogeneous domain 

ontologies. Although there have been many studies about the method for building the ontology 

using ontology tools, there are still limited to build the perfect ontology.  

Ontology merging can be a problem because it involves combining two or more 

ontologies that may have overlapped or conflicting concepts, properties, and axioms. When 

merging ontologies, it is important to ensure that the resulting ontology is coherent, consistent, 

and semantically meaningful. However, achieving this can be challenging due to the following 

reasons: 

1. Inconsistencies: The merged ontology may contain inconsistencies in the form of 

contradictory statements or definitions. These inconsistencies can arise when the 

ontologies being merged have different or conflicting definitions for the same concept or 

property. 

2. Conceptual heterogeneity: The ontologies being merged may have different 

https://ejsit-journal.com/index.php/ejsit
http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
239 

conceptualizations of the same domain, leading to conceptual heterogeneity. This can 

result in the presence of multiple, overlapping, or redundant concepts in the merged 

ontology. 

3. Structural heterogeneity: The ontologies being merged may have different structural 

characteristics, such as different taxonomies or hierarchy structures. This can make it 

difficult to merge the ontologies and create a coherent structure. 

4. Axiomatic heterogeneity: The ontologies being merged may have different axioms or 

logical constraints, which can lead to conflicts when attempting to merge them. 

5. Scalability: As the number of ontologies to be merged increases, the problem of ontology 

merging becomes more complex, making it difficult to identify and resolve conflicts and 

inconsistencies. 

The symmetric approach in ontologies is a way of representing relationships between 

concepts where the relationship is symmetric or bidirectional. In other words, if concept A is 

related to concept B through a symmetric relationship, then it is also true that concept B is 

related to concept A through the same relationship. 

The symmetric approach is often contrasted with the asymmetric approach, where 

relationships between concepts are unidirectional. For example, the "parent of" relationship 

between two concepts is asymmetric because if concept A is the parent of concept B, it does 

not necessarily mean that concept B is the parent of concept A. 

In ontologies, the symmetric approach is often used to represent relationships between 

concepts in a more flexible and natural way. It allows for more accurate representation of 

complex relationships between concepts and can be useful in a wide range of applications, such 

as in natural language processing, knowledge representation, and semantic web technologies. 

In this paper, we have created ontologies and applied the concepts using the symmetric 

approach, we created an application to perform this research. Our research is not completely 

original as many of the studies have been made on this merging and mapping of the ontology, 

but our approach is original as we are manually merging and mapping the ontologies. Ontology 

merging, and as its name implies, merges the concepts that match semantically with each other 

into a single concept, and then produces a unique ontology from two source ontologies. 

 

Methodology 

Integration of blood banks dataset with data ontology after accessing best accuracy and 

precision of data via various machine learning and deep learning algorithms. Map and import 

one to one data and keep maintain RDF store, versatile queries will ensure the presence and 

absence of data via SPARQL patterns and show the resultant in react interface. Figure 1 shows 

the high-level structure of a system having its modules, components, and their relationships. 

Beside these SPARQL is a query language used to retrieve data from semantic web data 

sources. It is used to query data expressed in RDF (Resource Description Framework) format, 

which is a standard for representing and exchanging information on the web. 

 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
240 

 
Figure 1: System Architecture 

 

The methodology employ in the development of the envisioned system is Waterfall. In 

the waterfall method firstly define function and non-functional requirements. Make the design 

of system from these requirements. Then implement the design using different tools and 

techniques. The last testing and maintenance phase will be performed for deploying our web 

application of blood donation system. 

 

Protégé 

Protégé is a popular open-source ontology editor and development environment that 

provides a range of tools and features to help users create and manage ontologies. Here are 

some ways in which Protégé can help in the making of ontologies: 

 User-friendly interface: Protégé provides a user-friendly interface that allows users to 

create and edit ontologies without requiring any programming knowledge. 

 Ontology visualization: Protégé provides a graphical representation of ontologies, 

making it easy for users to visualize the relationships between classes and properties. 

 Automated reasoning: Protégé supports automated reasoning, which helps users to 

identify inconsistencies and errors in their ontologies. 

 Collaboration: Protégé provides tools for collaboration, allowing multiple users to work 

on the same ontology simultaneously. 

 Customization: Protégé allows users to customize the ontology development 

environment to suit their specific needs, by providing a range of plugins and add-ons. 

Benefits of Using Protégé: 

There are several benefits of using Protégé for ontology development, some of which are 

listed below: 

Firstly, Protégé provides a user-friendly interface that allows users to create and edit 

ontologies without requiring any programming knowledge. This makes it easy for domain 

experts and non-technical users to participate in the ontology development process, thus 

enabling collaboration and knowledge sharing across different domains. 

Secondly, Protégé provides a range of ontology visualization tools that allow users to 

visualize the relationships between classes and properties. This helps users to better understand 

the structure of their ontologies and identify potential issues or areas for improvement. 

Thirdly, Protégé supports automated reasoning, which helps users to identify 

inconsistencies and errors in their ontologies. This can save time and effort by detecting errors 

early in the development process before they become more difficult to correct. 

Fourthly, Protégé provides tools for collaboration, allowing multiple users to work on the 

same ontology simultaneously. This enables teams to work more efficiently and effectively, by 

allowing them to share their knowledge and expertise in real-time. 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
241 

Finally, Protégé allows users to customize the ontology development environment to suit 

their specific needs, by providing a range of plugins and add-ons. This allows users to tailor 

the environment to their specific domain or ontology, and to add new features as needed. 

 

Creation of Ontology 

An ontology for a blood donation system would consist of a set of concepts and 

relationships between them that are relevant to the domain of blood donation. Some key 

concepts in this domain might include blood types, blood banks, donors, recipients, and 

donations. Properties might include relationships between these entities, such as "donatesTo", 

"receivesFrom", "hasBloodType", and "belongsToBloodBank". 

Using Protégé, we could create classes for each of these concepts, along with their 

corresponding properties. For example, we could create a class for "BloodType" with 

subclasses for each type of blood (A, B, AB, O) and properties such as "isCompatibleWith" to 

represent the compatibility between different blood types. Similarly, we could create classes 

for "Donor" and "Recipient" with properties such as "hasBloodType" and "donatesTo". 

We could also create a class for "BloodBank" with properties such as "hasDonors" and 

"receivesFrom". Instances of this class could represent individual blood banks and their 

respective donors and recipients. We could also create a class for "Donation" with properties 

such as "hasDonor", "hasRecipient", and "hasDate", representing individual blood donations 

and their associated information. 

By creating an ontology in this way, we could facilitate data integration and retrieval 

across multiple blood donation systems. For example, we could use reasoning to infer the 

compatibility between donors and recipients based on their blood types and other properties. 

We could also use the ontology to develop decision support systems that help blood banks and 

healthcare providers make informed decisions about blood transfusions. 

Additionally, we could use Protégé's visualization tools to create graphical 

representations of the ontology, making it easier to understand and analyze. We could also use 

plugins such as OntoGraf to visualize the relationships between different entities in the 

ontology. 

In summary, creating an ontology in Protégé for a blood donation system would provide 

a formal representation of the key concepts and relationships in the domain, facilitating data 

integration, retrieval, and analysis. It would also provide a foundation for the development of 

decision support systems and other applications that could improve the efficiency and 

effectiveness of blood donation systems. 

Ontology Building 

OWL ontology is built by following steps: 

 Create the classes, subclasses and provide information about them. All the classes will 

be subclass of owl:Thing. 

 Create data properties and provide domain that will be the class in the ontology. Enter 

range of the data property which will be the int, double or string. All the data properties 

will be the subclass of owl: topDataProperty. 

 Create object properties and provide domain and range in this case both will be the class. 

Object properties are used to define the relation between two objects also called 

individuals in OWL ontology. All the object properties are subclass of owl: 

topObjectProperty. Provide the characteristic of object property and check the 

appropriate option. 

 Create individuals in the individuals tab. Individuals are the instances of class which is 

set in the “type” description. Create the object assertion properties and data assertion 

properties. 

 Set disjoint sets where two classes cannot contain same instance. 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
242 

Classes in Ontology Building 

In Protégé, classes are the most basic building blocks of an ontology. A class represents 

a category or type of entity in a domain. It defines a set of instances or individuals that share 

common characteristics and relationships. 

To create a class in Protégé, you can follow these steps: 

1. Open the Protégé application and create a new ontology. 

2. In the "Classes" tab, click the "+" button to create a new class. 

3. Enter the name of the class and any other information you want to include, such as a 

description or comments. 

4. Add any necessary properties to the class, such as subclasses, super classes, or equivalent 

classes. 

Here are some common types of classes you might encounter in an ontology: 

1. Entity classes: These are classes that represent individual entities in the domain, such as 

"Person" or "Organization". 

2. Attribute classes: These are classes that represent attributes or properties of entities, such 

as "Age" or "Gender". 

3. Process classes: These are classes that represent processes or actions that occur in the 

domain, such as "Payment" or "Registration". 

4. Relationship classes: These are classes that represent relationships between entities, such 

as "HasChild" or "HasParent". 

5. Abstract classes: These are classes that represent abstract concepts or categories that are 

not directly instantiated, such as "Animal" or "Vehicle". 

6. Utility classes: These are classes that are used to define utility concepts or functions that 

are needed to support the ontology, such as "Collection" or "List". 

It's important to note that classes can also have subclasses and super classes. Subclasses 

are more specific types of a given class, while super classes are more general. For example, 

"Cat" might be a subclass of "Animal", while "Animal" is a superclass of "Cat". 

Overall, classes are an essential component of an ontology in Protégé. By defining classes 

and their properties, we can create a structured and formal representation of the entities and 

relationships in a domain. This facilitates data integration, retrieval, and analysis, and can be 

used to develop applications that improve the efficiency and effectiveness of a system. 

Relationships in Ontology 

In Protégé, relationships in ontology are represented using properties. Properties are 

binary relationships between classes, where one class is the domain and the other class is the 

range. There are two main types of properties in Protégé: object properties and data properties. 

Object properties- are relationships between two classes, where one class represents the 

subject of the relationship and the other class represents the object. For example, in a blood 

donation system ontology, we might define an object property called "hasDonor" that connects 

a class representing a blood bank to a class representing a donor. This relationship can be 

represented in Protégé as an arrow between the two classes. 

Data properties- on the other hand, are relationships between a class and a data value. 

For example, we might define a data property called "donationDate" that connects a class 

representing a blood donation to a data value representing the date of the donation. This 

relationship can be represented in Protégé as a line between the class and the data value. 

In addition to these basic relationship types, Protégé also supports more complex 

relationship types, such as transitive properties, inverse properties, functional properties, and 

inverse functional properties. These properties allow us to define more sophisticated 

relationships between classes and entities in an ontology. 

For example, we might define a transitive property called "isParentOf" that connects a 

class representing a parent to a class representing a child. This property would allow us to infer 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
243 

that if A is a parent of B, and B is a parent of C, then A is also a parent of C. This relationship 

can be represented in Protégé as a series of arrows between the classes. 

Similarly, we might define an inverse property called "hasDonation" that connects a class 

representing a donor to a class representing a blood donation. This property would allow us to 

infer that if A has donated B, then B was made by A. This relationship can be represented in 

Protégé as an arrow pointing in the opposite direction to the original arrow. 

Overall, relationships in ontology are a critical component of an ontology in Protégé. By 

defining relationships between classes and entities, we can create a more comprehensive and 

accurate representation of a domain. This can be used to support a wide range of applications, 

from data integration and retrieval to reasoning and inference. 

Ontology and its use as a Database 

Ontologies can be used as a database for storing and retrieving information in a structured 

way. In fact, some researchers argue that ontologies are more than just a database, as they 

provide a formal, machine-readable representation of knowledge in a particular domain that 

can be used to support a wide range of applications. 

Ontologies can be used as a database in several ways. Firstly, ontologies provide a 

structured way to organize data, as they define a set of classes, properties, and relationships 

that can be used to represent different types of entities and their attributes. For example, in a 

blood donation system ontology, we might define classes for donors, blood banks, and 

donations, and properties to represent attributes such as donor name, donation date, blood type, 

and so on. By structuring the data in this way, we can ensure that it is organized and easily 

searchable. 

Secondly, ontologies provide a powerful querying mechanism that can be used to retrieve 

information from the database. In Protégé, for example, the SPARQL query language can be 

used to query ontologies and retrieve information based on certain criteria. This makes it easy 

to search the ontology for specific information, such as all donors with a particular blood type, 

or all donations made by a particular donor. 

Thirdly, ontologies can be used to support reasoning and inference. By defining 

relationships between entities and classes, we can use automated reasoning tools to infer new 

information based on the existing data in the ontology. For example, if we have an ontology 

that defines relationships between diseases, symptoms, and treatments, we can use automated 

reasoning to infer the most likely treatment for a patient based on their symptoms and medical 

history. 

Finally, ontologies can be used to support data integration and interoperability between 

different databases and applications. By defining a common vocabulary and set of 

relationships, ontologies can be used to bridge the gap between different databases and systems 

that use different terminologies and data structures. This makes it easier to combine data from 

different sources and perform complex analysis and decision-making tasks. 

Overall, ontologies can be a powerful tool for storing and retrieving information in a 

structured and machine-readable way. By defining a set of classes, properties, and 

relationships, we can create a powerful database that can be used to support a wide range of 

applications, from data integration and retrieval to reasoning and inference. 

Classification of Ontology 

With reference to our Project, the classification of ontology can be done in several ways 

using the Protégé software. Here are some possible classifications: 

1. Blood types: Blood types can be classified into four main groups: A, B, AB, and O. Each 

group can be further subcategorized into positive or negative based on the presence or 

absence of Rh factor. This classification can help in identifying the blood type of donors 

and recipients. 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
244 

2. Donor information: Donor information can be classified into different categories such as 

name, age, gender, blood type, contact information, health history, and donation history. 

This classification can help in identifying suitable donors for specific recipients. 

3. Blood donation process: The blood donation process can be classified into different 

stages such as donor screening, blood collection, testing, processing, and storage. Each 

stage can be further subcategorized based on the specific procedures and protocols 

involved. This classification can help in ensuring that the blood donation process is safe 

and efficient. 

4. Blood products: Blood products can be classified into different categories such as whole 

blood, red blood cells, plasma, platelets, and cryoprecipitate. Each category can be 

further subcategorized based on the specific components and uses. This classification can 

help in identifying the appropriate blood product for a specific medical condition. 

 

SPARQL Queries 

SPARQL (SPARQL Protocol and RDF Query Language) is a standard query language 

used for querying data stored in RDF (Resource Description Framework) format. In the context 

of ontologies, SPARQL queries can be used to retrieve information from ontologies, which are 

also typically stored in RDF format. Here are some benefits of using SPARQL queries in 

ontologies: 

Querying ontology data: SPARQL allows querying the data stored in an ontology, which 

makes it possible to retrieve specific information from the ontology. This can be helpful in a 

variety of applications such as data integration, data mining, and knowledge discovery. 

Ontology maintenance: SPARQL queries can help in maintaining the ontology by 

checking for inconsistencies, redundancies, and other errors. For example, one can use 

SPARQL to identify missing or incorrect data in the ontology, which can then be corrected. 

Integration with other tools: SPARQL queries can be integrated with other tools to create 

more powerful applications. For example, one can use SPARQL to query the ontology data 

and then use the results to generate reports or visualizations. 

Interoperability: SPARQL is a standard query language, which means that it can be used 

across different ontologies and software applications. This helps in promoting interoperability 

and data sharing among different systems. 

Flexibility: SPARQL queries are flexible and can be adapted to different use cases. For 

example, one can use SPARQL to retrieve information about specific classes or instances, or 

to query data across multiple ontologies. 

Overall, SPARQL queries provide a powerful and flexible way to retrieve information 

from ontologies and can help in a variety of applications related to ontology development, 

maintenance, and integration. 

 

Implementation 

(Braga, J., Dias, J. L., & Regateiro, F. (2020). A Machine Learning 

Ontology. ResearchGate, p. 10, November 25, 2022.) 

Object Properties 

In ontology, an object property is used to describe the relationships between individuals 

or entities. Specifically, an object property expresses a relationship between two objects, where 

one object is the subject and the other is the object of the property. 

In the context of a blood donation ontology, there could be several object properties that 

describe the relationships between different entities involved in the blood donation process as 

shown in Figure 2. 

Donor-Recipient Relationship: This object property would relate a blood donor to the 

recipient of their blood donation. For example, a blood donor could donate blood to their 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
245 

spouse, and this relationship could be expressed using the object property 

"hasSpouseRecipient". 

Donor-Blood Type Relationship: This object property would relate a blood donor to their 

blood type. For example, a donor with type O blood would have the object property 

"hasBloodTypeO". 

Donor-Donation Center Relationship: This object property would relate a blood donor 

to the donation center where they made their donation. For example, a donor who made their 

donation at a Red Cross donation center would have the object property 

"donatedAtRedCrossCenter". 

Recipient-Blood Type Relationship: This object property would relate a blood recipient 

to their blood type. For example, a recipient with type A blood would have the object property 

"hasBloodTypeA". 

Recipient-Transfusion Relationship: This object property would relate a blood recipient 

to the transfusion of blood they received. For example, a recipient who received a transfusion 

of type B blood would have the object property "receivedTypeBTransfusion". 

By using object properties in a blood donation ontology, we can describe the relationships 

between different entities involved in the blood donation process in a structured and formal 

way. This can help to improve the accuracy and consistency of data related to blood donation, 

which can ultimately lead to better outcomes for patients who need blood transfusions. 

 

 
Figure 2: Object Properties 

 

Data Properties 

In an ontology, data properties are used to define attributes or characteristics of 

individuals or instances of a particular class. These properties are used to specify the values 

that can be assigned to the attributes, such as strings, numbers, and dates. In the context of a 

blood donation system ontology, data properties can be used to define attributes of blood 

donors, recipients, blood banks, and other relevant entities. 

Here are some examples of data properties that are used in a blood donation system 

ontology as shown in Figure 3. 

Donor Name: This property can be used to specify the name of the blood donor. It can 

be represented as a string value. 

Donor Age: This property can be used to specify the age of the blood donor. It can be 

represented as an integer value. 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
246 

Donor Blood Type: This property can be used to specify the blood type of the donor. It 

can be represented as a string value, such as "A+", "B-", or "O+". 

Donor Last Donation Date: This property can be used to specify the date when the donor 

last donated blood. It can be represented as a date value. 

Recipient Name: This property can be used to specify the name of the blood recipient. It 

can be represented as a string value. 

Recipient Age: This property can be used to specify the age of the blood recipient. It can 

be represented as an integer value. 

Recipient Blood Type: This property can be used to specify the blood type of the recipient. 

It can be represented as a string value. 

Blood Bank Name: This property can be used to specify the name of the blood bank. It 

can be represented as a string value. 

Blood Bank Address: This property can be used to specify the address of the blood bank. 

It can be represented as a string value. 

Blood Bank Phone Number: This property can be used to specify the phone number of 

the blood bank. It can be represented as a string value. 

These are just a few examples of data properties that can be used in a blood donation 

system ontology. Other properties can be added as needed to capture the relevant information 

about the entities in the system. By defining these properties, the ontology can help to 

standardize the representation of data across different systems and ensure that information is 

consistent and accurate. 

 

 
Figure 3: Data Properties 

 

Ontology Graph 

An ontology graph in Protégé is a graphical representation of the concepts, classes, and 

relationships between them within a domain. In the context of a blood donation system, an 

ontology graph can help to define and organize the knowledge related to blood donation, 

including the concepts, relationships, and properties that are relevant to the domain. 

As shown in Figure 4, the ontology graph for a blood donation system could include 

classes such as "Blood Bank," "Donor," "Recipient," "Blood Type," "Blood Donation," "Blood 

Component," and "Blood Test." These classes would represent the main concepts within the 

domain and would be connected by relationships such as "Donates," "Receives," "Has Blood 

Type," "Is Component Of," and "Is Tested By." 

For example, a "Donor" class would have properties such as "Name," "Age," "Blood 

Type," and "Contact Information," and it would be connected to a "Blood Donation" class 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
247 

through a "Donates" relationship. The "Blood Donation" class would have properties such as 

"Donation Date," "Donation Location," and "Blood Component," and it would be connected to 

a "Blood Bank" class through an "Is Stored In" relationship. 

The ontology graph could also include axioms and rules that define the relationships 

between the classes, such as "A donor can donate blood multiple times," or "A recipient must 

have a compatible blood type with the donated blood." 

Overall, the ontology graph in Protégé provides a visual representation of the knowledge 

within a domain and can help to organize and formalize the concepts and relationships involved 

in a blood donation system. 

 

 
Figure 4: Ontology Graph 

 

Classes in Ontology 

In ontology, as shown in Figure 4 a class is a group or category of similar things or 

concepts that share common attributes, behaviors, or relationships. In the context of a blood 

donation system, classes can be used to represent the different entities or concepts that are 

relevant to the system. 

Some of the classes that might be used in an ontology for a blood donation system could 

include: 

Donor - a class representing individuals who donate blood. This class might have 

properties such as name, age, gender, blood type, and contact information. 

Blood Bank - a class representing a facility where donated blood is collected, processed, 

and stored. This class might have properties such as name, location, contact information, and 

inventory. 

Recipient - a class representing individuals who receive blood transfusions. This class 

might have properties such as name, age, gender, blood type, and medical history. 

Blood Type - a class representing the different blood types that exist, such as A, B, AB, 

and O. This class might have properties such as compatibility rules for blood transfusions. 

Blood Donation - a class representing a specific instance of a donor donating blood to a 

blood bank. This class might have properties such as the date, time, location, and quantity of 

the donation. 

Blood Component - a class representing the different components that can be extracted 

from donated blood, such as red blood cells, plasma, and platelets. This class might have 

properties such as compatibility rules and shelf life. 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
248 

Blood Test - a class representing the different tests that are performed on donated blood 

to ensure its safety and compatibility for transfusion. This class might have properties such as 

the type of test, the date it was performed, and the results. 

These classes can be related to each other through properties or relationships to define 

the different types of associations or interactions that can exist between them. For example, a 

"Donor" class can be related to a "Blood Donation" class through a "donates" relationship, and 

a "Blood Bank" class can be related to a "Blood Donation" class through a "stores" relationship. 

 

 
Figure 5: Classes in ontology 

 

 

OWL Wiz (Hierarchy of Classes) 

 

 
Figure 6: OWLWiz 

 

As shown in Figure 6, hierarchy of classes represents a structure of classes and subclasses 

organized in a hierarchical manner. This hierarchy helps to organize and classify different 

entities based on their properties and relationships with other entities. 

 

 

 

 

 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
249 

Working with Machine Learning Algorithms 

An Ontology-based Approach for Making Machine Learning Systems Accountable 

(Esnaola-Gonzalez, 2021) 

Blood donation systems rely heavily on timely and efficient donor management to ensure 

a stable supply of safe blood for transfusions. Machine learning and ontology can be used in 

blood donation systems to improve the efficiency of donor management and enhance the safety 

of the donated blood. 

Machine learning algorithms like Gradient boosting, Random forest classifier and MLP 

classifier etc. can be used to analyze the data collected from donors and predict which donors 

are most likely to donate in the future. This information can be used to tailor donor recruitment 

campaigns to specific groups of potential donors. For example, if machine learning algorithms 

predict that younger donors are more likely to donate in the future, recruitment campaigns can 

be targeted towards this demographic to increase the likelihood of obtaining donations. 

Machine learning can also be used to improve the safety of donated blood by analyzing 

the results of pre-donation health screenings. By analyzing the results of pre-donation health 

screenings, machine learning algorithms can identify potential risk factors for bloodborne 

diseases and other health issues. This information can be used to flag potential donors who may 

be at increased risk of transmitting bloodborne diseases or other health issues and prevent them 

from donating. 

Ontologies can be used to standardize the terminology used to describe the different 

aspects of the blood donation system. By standardizing the terminology, it becomes easier to 

integrate data from different sources and improve data quality. For example, an ontology can 

be used to standardize the terminology used to describe donor demographics, blood types, and 

health screening results. This standardized terminology can then be used to develop a database 

that can be queried to provide insights into donor behavior, donation patterns, and other aspects 

of the blood donation system. 

In summary, the implementation of machine learning and ontology in blood donation 

systems can help to improve the efficiency of donor management and enhance the safety of 

donated blood. By using machine learning algorithms to predict donor behavior and identify 

potential risk factors, blood donation systems can tailor their donor recruitment campaigns and 

prevent potentially unsafe blood from being donated. By using ontologies to standardize 

terminology, blood donation systems can improve data quality and gain insights into donor 

behavior and donation patterns. 

 

Comparison Table 

 

 
Figure 7: Comparison Table 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
250 

As shown in the above Figure 7, we are provided with different models like Logistic 

Regression, SVM, Decision Trees, KNN, Gradient Roasting, Random Forest Classifier and 

MLP classifier. Details of the models are given below.  

Logistic Regression is a linear model that is used for binary classification problems, 

where the goal is to predict whether an input belongs to one of two classes. In our model this 

algorithm gave us Training accuracy 0.732759 and Test accuracy of 0.784091 with a sensitivity 

of 0.1. 

SVM is another popular algorithm for binary classification that is widely used in a variety 

of applications. SVM tries to find the best boundary between classes in the feature space. In 

our model this algorithm gave us Training accuracy 0.7221264 and Test accuracy of 0. 772727 

with a sensitivity of 0.0. 

Decision Trees are a type of supervised learning algorithm used for both classification 

and regression tasks. Decision trees build a tree-like model of decisions and their possible 

consequences. In our model this algorithm gave us Training accuracy 0.862069 and Test 

accuracy of 0. 727273 with a sensitivity of 0.4. 

KNN is a non-parametric algorithm used for classification and regression tasks. The basic 

idea of KNN is to find the K-nearest neighbors of a new data point based on some distance 

metric, and then use the labels or values of these neighbors to predict the label or value of the 

new point. In our model this algorithm gave us Training accuracy 0.798851 and Test accuracy 

of 0. 761364 with a sensitivity of 0.1. 

Gradient Boosting is an ensemble method that uses a combination of weak learners 

(usually decision trees) to create a strong learner. It iteratively trains a sequence of models, 

where each subsequent model tries to improve the error of the previous model by fitting the 

residual errors. In our model this algorithm gave us Training accuracy 0.879310 and Test 

accuracy of 0. 772727 with a sensitivity of 0.3. 

Random Forest Classifier is another ensemble method that uses a combination of decision 

trees. Random Forest builds multiple decision trees using a subset of the available features and 

a subset of the available training data. The final output is then based on the majority vote of 

the individual decision trees. In our model this algorithm gave us Training accuracy 0.997126 

and Test accuracy of 0. 738636 with a sensitivity of 0.2. 

MLP Classifier is a type of neural network that uses multiple layers of neurons to learn 

complex relationships between the input and output data. It uses an activation function and 

back propagation algorithm to update the weights and biases of the network to minimize the 

error between the predicted and actual output. In our model this algorithm gave us Training 

accuracy 0.732759 and Test accuracy of 0. 772727 with a sensitivity of 0.0. 

 

Details of the features 

 

 
Figure 8: Details of results 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
251 

Graphical representation of the features playing the role in the Model 

 

 
Figure 9: Graphical Representation 

 

As shown in the Figure 8 and 9 the age feature is contributing the most in training of the 

model. Then we have PLT, WCB, HGB, RBC, Sex, STDs and so on. These features are 

contributing the most according to the order of their placement in the training of the model. 

 

Algorithms 

 

 
Figure 10: Machine Learning Algorithm 

 

As shown in the Figure 10 we are provided with different algorithms used in Machine 

learning. The details of all the models are given as follows: 

Logistic Regression: This is a linear model that is used for binary classification problems, 

where the goal is to predict whether an input belongs to one of two classes. It models the 

probability of the output using a logistic function and can be trained using gradient descent. 

The parameter ‘random_state’ is used to set the random seed for reproducibility. 

SVM: This is a popular algorithm for binary classification that is widely used in a variety 

of applications. SVM tries to find the best boundary between classes in the feature space. The 

parameter ‘C’ is used to set the regularization parameter of the SVM, which controls the trade-

off between maximizing the margin and minimizing the classification error. 

Decision Tree: This is a type of supervised learning algorithm used for both classification 

and regression tasks. Decision trees build a tree-like model of decisions and their possible 

consequences. The parameter ‘max_depth’ is used to set the maximum depth of the decision 

tree, which controls the complexity of the model and prevents overfitting. 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
252 

KNN: This is a non-parametric algorithm used for classification and regression tasks. The 

basic idea of KNN is to find the K-nearest neighbors of a new data point based on some distance 

metric, and then use the labels or values of these neighbors to predict the label or value of the 

new point. The parameter ‘n_neighbors’ is used to set the number of neighbors to consider 

when making a prediction. 

Gradient Boosting: This is an ensemble method that uses a combination of weak learners 

(usually decision trees) to create a strong learner. It iteratively trains a sequence of models, 

where each subsequent model tries to improve the error of the previous model by fitting the 

residual errors. The parameter ‘n_estimators’ is used to set the number of weak learners to use, 

and the parameter ‘learning_rate’ controls the contribution of each weak learner. 

Random Forest Classifier: This is another ensemble method that uses a combination of 

decision trees. Random Forest builds multiple decision trees using a subset of the available 

features and a subset of the available training data. The final output is then based on the 

majority vote of the individual decision trees. The parameter ‘n_estimators’ is used to set the 

number of decision trees to build, and ‘random_state’ sets the random seed for reproducibility. 

MLP Classifier: This is a type of neural network that uses multiple layers of neurons to 

learn complex relationships between the input and output data. It uses an activation function 

and backpropagation algorithm to update the weights and biases of the network to minimize 

the error between the predicted and actual output. The parameter ‘hidden_layer_sizes’ is used 

to set the number of neurons in each hidden layer, ‘random_state’ sets the random seed for 

reproducibility, ‘verbose’ enables verbose output during training, and ‘learning_rate_init’ sets 

the initial learning rate used during optimization. 

 

SPARQL Queries 

 

Post Query: 

 

 
Figure 11: SPARQL Queries 

 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
253 

 
Figure 12: SPARQL queries 

 

As shown in Figures 11 & 12, we have written sparl queries to get data from the user and 

store it into the API. This is a method in a Spring Boot controller that handles a POST request 

to add details of a blood request. The request body is expected to be in JSON format, which is 

deserialized using the ObjectMapper class from the Jackson library. The method extracts the 

relevant data from the JSON object and creates an RDF triple with the data using the SPARQL 

INSERT query. The query is executed using the InsertSparql method, which is not shown in 

this code snippet. Finally, the method returns a success message. The results of the query are 

shown in Figure 13 given below.  

 

Results 

 

 
Figure 13: INSERT Query Outcomes 

 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
254 

View Query: 

 

 
Figure 14: View Query 

 

In the above Figure 14, we are writing sparql queries to get the data from the database, 

This is a GET API endpoint that retrieves a news article by its ID. The endpoint takes the news 

ID as a path variable and constructs a SPARQL query to retrieve the news article's details from 

the ontology. 

The SPARQL query selects all the properties of a News individual that has the provided 

news ID. It then calls a method ReadSparqlMethod(queryString) that executes the SPARQL 

query and returns the result as a JSON string. The method checks if the result contains any 

bindings, and if not, returns a JSON error message with a 404 HTTP status code. 

The method constructs and returns a ResponseEntity object with the result JSON string 

and HTTP headers. If the news article is found, it returns the result JSON with a 200 HTTP 

status code. If the news article is not found, it returns an error JSON with a 404 HTTP status 

code.this query is used to fetch the data from the database. The results of the query are as shown 

in the Figure 15. 

 

 
Figure 15: VIEW Query outcomes 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
255 

Delete Query: 

 

 
Figure 16: DELETE Query 

 

As shown in Figure 16, this is a query to delete the Blood Request from the database, 

This is a Spring Boot controller method for handling HTTP DELETE requests to delete blood 

donation requests from a database using SPARQL. The method takes a single parameter, "id," 

which represents the unique identifier of the blood donation request to be deleted. The 

SPARQL DELETE query uses this identifier to match the corresponding blood donation 

request in the database and delete it. The method returns a success message after executing the 

SPARQL query. Results of this query are shown in the Figure 17 given below. 

 

 

 
Figure 17: DELETE Query outcomes 

 

  

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
256 

Put Query: 

 

 
Figure 18: PUT Query 

 

 
Figure 19: PUT Query 

 

In the above Figure 18 and 19, we have the query to edit the record that is already existing 

in the database. This code defines a REST endpoint that handles an HTTP PUT request to 

update details of a blood donation request in a blood donation system. The endpoint accepts a 

request body in JSON format containing updated values for the blood request details. The code 

uses the Jackson ObjectMapper library to parse the JSON request body into a JsonNode object. 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
257 

The code then extracts the updated values from the JsonNode object and constructs a SPARQL 

query to update the corresponding blood donation request in the RDF graph. The SPARQL 

query deletes the existing values of the blood request details and inserts the new values. The 

WHERE clause of the SPARQL query filters the blood donation request by its ID and retrieves 

its existing values. The UpdateSparql() function executes the constructed SPARQL query to 

update the blood donation request. Finally, the function returns a success message indicating 

that the update was successful. The results of this query are shown in the Figure 20 given below. 

 

 
Figure 20: PUT Query outcomes 

 

Conclusion 

Problem statement is about blood donations. To work on it employ machine learning and 

ontology learning methodologies because they enable the system to learn on its own. Blood 

donation is essentially a process where a person can willingly donate his or her blood for 

subsequent transfusions. The procedure of giving blood is extremely important, and it may be 

made simple by employing machine learning. In this project, we suggest an automated blood 

donation system to facilitate blood donation and relieve emergency situations The main goal 

of creating this system or web application was to allow users to look for blood in blood banks 

and obtain blood in any situation. By contacting the donor online or at a personal phone 

number, patients can obtain the blood. 

 

Acknowledgment 

The Authors wish to thank Department of Computer Science COMSATS University 

Islamabad, Lahore Campus, Pakistan for support and help in the field of Semantic web 

structuring integrated ML Algorithms. 

 

  

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
258 

References 

Braga, J., Dias, J. L., & Regateiro, F. (2020). A Machine Learning Ontology. ResearchGate, p. 

10, November 25, 2022. 

Esnaola-Gonzalez, I. (2021). An Ontology-based approach for making Machine learning 

systems Accountable. IOS Press, p. 17.  

Khan, A. R., & Qureshi, M. S. (2009). Web-based information system for blood 

donation. International Journal of Digital Content Technology and its Applications, 3(2), 

137-142. 

Mostafa, M. M. (2009). Profiling blood donors in Egypt: A neural network analysis. Expert 

Systems with Applications, 36(3), 5031-5038. 

Rutkin, A. (2015). Big data aims to boost New York blood donation. New Scientist, 225(3006), 

19.  

Sinha, S., Seth, T., Colah, R. B., & Bittles, A. H. (2020). Haemoglobinopathies in India: 

estimates of blood requirements and treatment costs for the decade 2017–2026. Journal 

of Community Genetics, 11(1), 39-45. 

Srivastava, D. K., Tanwar, U., Krishna Rao, M.G., & Manohar, P. (2021). A Research Paper 

on Blood Donation Management. International Journal of creative research thoughts, 

9(5).  

 

http://www.ejsit-journal.com/

