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Abstract 
This paper aimed to identify the important factors that affected neonatal mortality and 

estimate Cox proportional hazards model with these factors. Data were collected from 

Omdurman Maternity Hospital, from the record of pregnant women from the first follow-up 

until the delivery and whether the neonate was alive or dead. The data focused on demographic 

variables (mother's age, number of previous delivery, city, number of neonate and the sex of 

neonate) and health variables (neonate weight and mode of delivery). Through log rank test the 

variables (age, previous delivers and weight of neonate) had a significant effect and the 

estimated single Cox proportional hazards models with these significant variables are 

significant and also the multiple Cox proportional hazards model is significant. 

Keywords: Explanatory Variables, Neonatal, Hazard Function, Survival Function, Cox 

Proportion Hazard Model 

 

Introduction 
The study of mortality occupies a special place in the field of demographic research, as 

it represents the negative element of population growth, and its decline is mainly related to the 

extent of social and economic progress achieved by society, and attention has been directed to 

the importance of studying mortality, especially neonatal. 

Studying the determinants of neonatal mortality, the dependent variable in which is the 

time that passes until death occurs, so it is considered one of the studies that can apply the cox 

proportional hazards model to it. This study came to identify the most important factors that 

can affect neonatal mortality in Sudan, which this factors to include in to cox proportion hazard 

model and evaluate the model. 

 

Data & Methods 

 

Data 

Data were collected from pregnancy follow-up files and the birth records from 

Omdurman Maternity Hospital in 2020; during this period, delivers will be recorded. The date 

of the first follow-up of the pregnant mother, and the date of delivery and an indication of 

whether the newborn (neonate) was alive or dead. Accordingly, the variables were divided into 

dependent variable is (time to event) the time the mother spends in study until delivery and 

explanatory variables age (mother's age), previous deliveries (number of previous deliveries to 

the mother), city (area of residence), number of neonate (twin - single), the sex neonate (male 

- female), neonate weight (normal (2.5-4 kg), abnormal), mode of delivery (normal vaginal 

delivery). 
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Methods 

The Kaplan-Meier estimate of the survival function 

In the past, the statistical methods used to study human death were the method of life 

tables, but these methods are no longer important after the development of statistical methods 

such as the Kaplan-Meyer method (Kaplan Meier) and abbreviated as (KM). That is destined 

(KM) for the survival curve is usually used for the analysis of individual data, as the method 

of life tables is used for the collected data, and because it is a method for counting the collected 

data, therefore it is inaccurate like the (KM) method, which uses the values of the items and 

that this estimator contributes to all the items observed (monitored and unsupervised). (Times 

of death) by taking survival at any point as a series of steps defining the observed survival 

times and death times, and using the observed data to estimate the conditional probability of 

survival at any time of death and multiplying the values of these probabilities to obtain the 

estimated survival function. 

Suppose we have (r) is singular and that: 

0 ≤ t1 ≤ t2 < ⋯ < tr < ∞ 
are the ordered times of death and that (rj) is the size of the risk group at (tj) and (dj) indicates 

the number of deaths observed at j =, tj1.2. … r 

The Kaplan-Meyer estimator of the survival functions (t) gives my clate: 

ŝ(t) =  ∏ [1 −
dj

rj
] k

j=1                                                   (1) 

And that this estimator is a scalar function whose values only change with each death time and 

is sometimes known as the marginal product estimator.  

Kaplan-Meier estimate of the hazard function 

The risk function is important when defining survival data regression models, and the 

word risk refers to describing the concept of death in a period after time.t) provided that the 

item remained alive until time (t). 

The Kaplan-Meier estimator of the risk function is found by taking the ratio of the 

number of deaths at a specific time of death to the number of items at risk at that time. 

Assuming that the risk function will be constant between the two successive times of death, the 

risk per time unit can be found by dividing by the time period, and therefore if We assumed 

that it refers to the number of deaths at the time of death (diJ) and that ti = 1.2. … . r, and 

if (rj) refer to the number of items in risk at time (tj), then the risk function for the period from 

(tj ) to (tj+1 ) can be estimated through the formula: 

ĥ(t) =
dj

tjτj
                                                                  (2) 

for tj ≤ t < tj+1 

τj = tj−1 − tj 

And that the approximate standard error of the functionĥ(t) can be found from the variancedi, 

and assuming that it follows the binomial distribution with the parameters (pi, ri), so that it is 
(pi) the probability of death in the period of length (T) so: 

var(dj)rjpj(1 − pj) 

 With an estimate that: Pi [
di

ri
] 

Se (ĥ(t)) = ĥ(t)√
rj−dj

rjdj
             (3) 

[Collett, 2003, p. 31] 
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Semi-parametric Cox regression model for survival data analysis 
When analyzing survival data, the concern is about the risk of death at any time after the 

original time of the study. As a result, the risk function is modeled directly in the survival 

analysis, and there are two reasons for modeling survival data. Risk, the second reason to model 

the risk function is to get the risk function itself for the individual (Collett, 2003). 

The basic model that we will discuss is the Cox model of relative risk or the risk model. 

Cox proposed this model (1972). This model is based on the assumptions of relative risk. This 

model does not assume a specific form for the probability distribution of survival times. 

Therefore, this model is known as a semi-parametric model and gives the following: 

h(t, x) = h0(t) eBx                                                             (4) 

 eBX – it is a function of the values of the variables X and B are model parameters, which is the 

parametric part in the model and the ratio of hazards function for a single variable (x) that has 

values and is usually used to compare two groups:[x0. x1] 

HR(t. x) =
h(t. x1)

h(t. x0)
 

=
h0(t)eBx0

h0(t)eBx0
=

eBx0

eBx0
= eB(x1−x0)                                           (5) 

We note that the risk level does not depend on time, and therefore the model is known as 

the relative risk model because this level is fixed with time. 

Since the survival function can be found from the risk function, and then the survival 

function is: 

s(t. x) = e−H(t.x)                                                                  (6) 

 

Results 

The following tables and figures are the results of analysis the data. 

 

Table 1: Log rank test for explanatory variables 

Log rank 

test 

Age Previous 

delivery 

Sex 

neonate 

Number of 

neonate 

City Weight 

neonate 

Mode of 

delivery 
2Chi 2.8 2.46 0.19 0.97 0.75 18.13 0.58 

p-value 0.0 0.0 0.66 0.32 0.39 0.0 0.45 
Source: prepared by the researchers by using STATA 17, 2023 

 

Table 2: Estimated Cox proportional hazards model for each variable 

Models  Age Previous 

delivery 

Sex 

neonate 

Number 

of neonate 

City Weight 

neonate 

Mode of 

delivery 

Parameter 1.59 1.01 140.71 1.98 1.03 30.77 4.04 

Wald test 1.97 1.66 0.44 1.03 0.82 3.98 1.02 

p-value 0 0 0.66 0.305 0.44 0 0.31 

E .r 0.35 0.30 0.22 0.59 0.34 0.10 0.7 
Source: Prepared by the researchers by using STATA 17, 2023 
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Figure 1: Estimated survival functions for explanatory variables 

Source: Prepared by the researchers by using STATA 17, 2023 

 

Table 3: Test significance Cox's multiple model 

Probability value Chi-square test -2 (log likelihood) 

0.00311 8.87 136.37605 
Source: Prepared by the researchers by using STATA 17, 2023 

 

Table 4: Estimated coefficients of the Cox multiple proportional hazards model for 

neonatal mortality 

Confidence interval  Standard 

error 

Hazard 

ratio  

Probability 

value 

Wald  

test 

Coefficient Variables  

Lower  Upper  

-1.257 0.688 0.309 0.752 0.001 3.6 0.285 Mother's 

age 

0.328 2.908 0.479 0.275 0.0 3.92 1.29 Previous 

deliveries 

1.677 5.016 0.143 28.409 0.0 3.98 3.347 Weight 

neonate 
Source: Prepared by the researchers by using STATA 17, 2023 

 

 
Figure 2: Estimated smoothed hazard function for Cox proportional hazards model 

Source: Prepared by the researcher by using STATA 17, 2023 
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Estimated smoothed hazard function with time can be defined through Table 4. 

 

 
Figure 3: Estimated survival function for Cox proportional hazards model 

Source: Prepared by the researcher by using STATA 17, 2023 

 

Discussion 

From Table 1 we found that the factors of age (Chi2 = 2.8, p-value = 0.0), previous 

delivery (Chi2 = 2.46, p-value = 0.0) and weight neonate (Chi2 = 18.13, p-value = 0.0) had a 

significant effect on the hazard of neonatal mortality in Sudan and the other factors sex neonate 

(Chi2 = 0.19, p-value = 0.66), number of neonate (Chi2 = 0.97, p-value = 0.32), city (Chi2 = 

0.75, p-value = 0.39), mode of delivery (Chi2 = 0.58, p-value = 0.45) had no significant effect 

on neonatal mortality in Sudan. 

From Table 2 estimation cox proportional hazards models for each variable, model of age 

(Parameter = 1.59, Wald test = 1.97, p-value = 0) is significant, model of previous delivery 

(Parameter = 1.01, Wald test = 1.66, p-value = 0) is significant, and model of weight neonate 

(Parameter = 30.77, Wald test = 3.9, p-value = 0) is significant. In other models there is no 

significant effect on neonatal mortality in Sudan. Figure 1 showed that the estimated survival 

function of explanatory variables. 

Through Table 1 and Table 2 the variables effecting neonatal mortality in Sudan (Age, 

previous delivery, Weight neonate) are entered into a semi-parametric proportion hazard model, 

and the test of significant model. 

From Table 3 we found that the value of log likelihood for the model as a whole is 

(136.37605) and that the value of the chi-square test is (8.87) at the degree of freedom (3) and 

the probabilistic value (0.00311), this meaning that the model is significant, which indicates 

that the model can be used in estimating the hazard neonatal mortality in Sudan. 

Table 4 showed the results of semi-parametric proportional hazard model estimated for 

neonatal mortality. The estimated coefficient for the age of the mother is (0.285) and 

(p=0.001<0.05), that means there are significant differences between mother’s ages in terms of 

the risk of neonatal death with the stability of (number of previous  delivery and weight 

neonate), when age changes by one year the hazard ratio decreases by (0.752). The estimated 

coefficient of the number of previous delivery is (1.29) and (p=0.000<0.05), that means there 

are significant differences in the number of previous delivery in terms of the risk of neonatal 

death with the stability of other variables (mother’s ages and weight neonate), when number of 

previous delivery changes by one birth the hazard ratio decreases by (0.275). The estimated 
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coefficient of the weight neonate is (3.347) and (p=0.000<0.05) that means the neonate weight 

has a significant effect on the risk of neonatal death with the stability of mother’s ages and 

number of previous delivery. When weight changes by 1 kg the hazard ratio decreases by 

(0.752). 
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